Buffon's Needle Problem

Clay Ford
October 15, 2010

Backstory

- Georges-Louis Leclerc, Comte de Buffon
- Known primarily for his contributions to Natural history (35 volumes) in 18th century
- Posed his needle problem in a paper published in 1777

Problem Setup

- A floor with parallel lines, all an equal distance apart (call it L):

Problem Setup

- Imagine we drop some needles with length $a=L$ on the floor:

Problem Setup

- What's the probability a needle intersects a line?

When does a needle intersect a line?

- When $x \leq(1 / 2) \sin \theta$, where x is distance from midpoint of needle to closest line.

For simplicity, we let $L=a=1$

What's the probability?

- We seek $P(x \leq(a / 2) \sin \theta)$
- Frame the problem in terms of geometry
- For example:

$$
P(\text { landing on green })=\frac{\text { green area }}{\text { total area }}
$$

Define a region

Plot of $1 / 2^{*} \sin ($ theta)

- For simplicity, set $L=a=1$
- Plot (1/2) $\sin \theta$ as a function of θ
- $0 \leq \theta \leq \pi / 2$
- The region in blue represents when $x \leq(1 / 2) \sin \theta$

Area of blue region

$$
\int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin \theta d \theta
$$

Area of total region

Plot of $1 / 2^{*} \sin ($ theta)

$$
A=\frac{1}{2} \frac{\pi}{2}=\frac{\pi}{4}
$$

Now find probability

$P(x \leq(1 / 2) \sin \theta)$

$$
=\frac{1}{2} / \frac{\pi}{4}=\frac{1}{2} \frac{4}{\pi}
$$

$$
=\frac{2}{\pi} \approx 0.6366197
$$

> In general, we can show
> $P(x \leq(a / 2) \sin \theta)=\frac{2 a}{L \pi}$
> for $a \leq L$

Plot of $1 / 2^{*} \sin$ (theta)

Let's Drop Some Needles

- Again, assume $a=1$ and $L=1$
- $P($ line intersection $)=2 / \pi$
- The process of dropping n needles and observing intersections has the Binomial setting
- Fixed number of trials
- Independence
- Same probability on each throw of a needle
- Two outcomes: cross a line/do not cross a line

Expected number of crossings

- Under Binomial setting, expected number of successes (i.e., line intersections) is

$$
E(X)=n p
$$

- Example: say we toss 1000 needles
- Expected number of line crossings is $1000 \times 2 / \pi$
- That's about 637

Estimating probability

- Further, we could toss 1000 needles and estimate p if we didn't know it
- Say we toss 1000 needles and observe 650 hits
- $\hat{p}=\frac{x}{n}=\frac{650}{1000}=0.65$

The implication

- But let's pretend we knew p but did not know the value for π
- Notice we can solve for π :

$$
\begin{aligned}
& \hat{p} \approx p=\frac{2}{\pi} \approx \frac{650}{1000} \\
& \Rightarrow \pi \approx \frac{2 n}{\text { number of hits }}=\frac{(2) 1000}{650} \approx 3.08
\end{aligned}
$$

- The frequency of needles crossing lines can be used to estimate π !

Simulation

- Using R or SAS, we can create a program that simulates needle tosses and estimates π
- randomly generate an acute angle
- randomly generate the distance of midpoint of needle to nearest line
- If $x \leq(1 / 2) \sin \theta$ then record a line crossing

Simulation Code - R

```
a <- 1 # length of needle
L <- 1 # distance between lines
n <- 100000 # number of dropped needles
hit <- 0
for(i in 1:n) {
        x <- runif(1,0,1)
        y <- runif(1,0,1)
        while(x^2 + y^2 > 1) { # no points outside of unit circle
                        x <- runif(1,0,1)
        y <- runif(1,0,1)
        }
        theta <- atan(y/x) # the random angle
        d <- runif(1,0,(L/2)) # distance of needle midpoint to
                                    nearest line
        if(d <= (a/2)*sin(theta)) {
            hit <- hit + 1
        }
}
pi.est <- (n*2*a)/(hit*L)
```


Simulation Code - SAS

```
Gdata _null_;
file log;
hit = 0;
a = 1; /*length of needle*/
L = 1; /*distance between lines*/
n = 1000000;
do i = 1 to n;
    x = ranuni(0);
    y = ranuni(0);
        do while (x**2 + y**2 > 1);
            x = ranuni(0);
            y = ranuni(0);
        end;
    theta = atan(y/x);/*random angle*/
    d = (a/2)*ranuni(0);/*distance from middle of needle to nearest line*/
if d <= (L/2)*sin(theta) then hit = hit + 1;
end;
pi_est = (n*2*a)/(hit*L);
put 'estimate of pi: ' pi_est;
run;
```


Why keep points in Unit Circle?

Distribution of angles when points limited within Unit Circle

Distribution of angles when points allowed out of Unit Circle

Simulation Results ($a=L$)

- For $a=1, L=1, n=10,000$
- 3.148119
- For $a=1, L=1, n=100,000$
- 3.140605
- For $a=1, L=1, n=1,000,000$
- 3.141680

First 6 digits of pi: 3.141592

Simulation Results ($a<L$)

- For $a=1, L=1.25, n=10,000$
- 3.175863
- For $a=1, L=1.25, n=100,000$
- 3.134735
- For $a=1, L=1.25, n=1,000,000$
- 3.139847

First 6 digits of pi: 3.141592

