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What is R?

What is R?
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What is R?

R is a dialect of the S language.
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What is S?

S is a language that was developed by John Chambers and others at Bell Labs.

S was initiated in 1976 as an internal statistical analysis environment—originally
implemented as Fortran libraries.

Early versions of the language did not contain functions for statistical modeling.

In 1988 the system was rewritten in C and began to resemble the system that we
have today (this was Version 3 of the language). The book Statistical Models in S
by Chambers and Hastie (the white book) documents the statistical analysis
functionality.

Version 4 of the S language was released in 1998 and is the version we use today.
The book Programming with Data by John Chambers (the green book)
documents this version of the language.
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Historical Notes

In 1993 Bell Labs gave StatSci (now Insightful Corp.) an exclusive license to
develop and sell the S language.

In 2004 Insightful purchased the S language from Lucent for $2 million and is the
current owner.

In 2006, Alcatel purchased Lucent Technologies and is now called Alcatel-Lucent.

Insightful sells its implementation of the S language under the product name
S-PLUS and has built a number of fancy features (GUIs, mostly) on top of
it—hence the “PLUS”.

In 2008 Insightful is acquired by TIBCO for $25 million

The fundamentals of the S language itself has not changed dramatically since
1998.

In 1998, S won the Association for Computing Machinery’s Software System
Award.
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S Philosophy

In “Stages in the Evolution of S”, John Chambers writes:

“[W]e wanted users to be able to begin in an interactive environment, where
they did not consciously think of themselves as programming. Then as their
needs became clearer and their sophistication increased, they should be able
to slide gradually into programming, when the language and system aspects
would become more important.”

http://www.stat.bell-labs.com/S/history.html
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Back to R

1991: Created in New Zealand by Ross Ihaka and Robert Gentleman. Their
experience developing R is documented in a 1996 JCGS paper.

1993: First announcement of R to the public.

1995: Martin Mächler convinces Ross and Robert to use the GNU General Public
License to make R free software.

1996: A public mailing list is created (R-help and R-devel)

1997: The R Core Group is formed (containing some people associated with
S-PLUS). The core group controls the source code for R.

2000: R version 1.0.0 is released.

2012: R version 2.15.1 is released on June 22, 2012.
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Features of R

Syntax is very similar to S, making it easy for S-PLUS users to switch over.

Semantics are superficially similar to S, but in reality are quite different (more on
that later).

Runs on almost any standard computing platform/OS (even on the PlayStation 3)

Frequent releases (annual + bugfix releases); active development.
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Features of R (cont’d)

Quite lean, as far as software goes; functionality is divided into modular packages

Graphics capabilities very sophisticated and better than most stat packages.

Useful for interactive work, but contains a powerful programming language for
developing new tools (user −→ programmer)

Very active and vibrant user community; R-help and R-devel mailing lists and
Stack Overflow
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Features of R (cont’d)

It’s free!
(Both in the sense of beer and in the sense of speech.)
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Free Software

With free software, you are granted

The freedom to run the program, for any purpose (freedom 0).

The freedom to study how the program works, and adapt it to your needs
(freedom 1). Access to the source code is a precondition for this.

The freedom to redistribute copies so you can help your neighbor (freedom 2).

The freedom to improve the program, and release your improvements to the
public, so that the whole community benefits (freedom 3). Access to the source
code is a precondition for this.

http://www.fsf.org
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Drawbacks of R

Essentially based on 40 year old technology.

Little built in support for dynamic or 3-D graphics (but things have improved
greatly since the “old days”).

Functionality is based on consumer demand and user contributions. If no one feels
like implementing your favorite method, then it’s your job!

(Or you need to pay someone to do it)

Objects must generally be stored in physical memory; but there have been
advancements to deal with this too

Not ideal for all possible situations (but this is a drawback of all software
packages).
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Design of the R System

The R system is divided into 2 conceptual parts:

1 The “base” R system that you download from CRAN

2 Everything else.

R functionality is divided into a number of packages.

The “base” R system contains, among other things, the base package which is
required to run R and contains the most fundamental functions.

The other packages contained in the “base” system include utils, stats, datasets,
graphics, grDevices, grid, methods, tools, parallel, compiler, splines, tcltk,
stats4.

There are also “Recommend” packages: boot, class, cluster, codetools,
foreign, KernSmooth, lattice, mgcv, nlme, rpart, survival, MASS, spatial,
nnet, Matrix.
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Design of the R System

And there are many other packages available:

There are about 4000 packages on CRAN that have been developed by users and
programmers around the world.

There are also many packages associated with the Bioconductor project
(http://bioconductor.org).

People often make packages available on their personal websites; there is no
reliable way to keep track of how many packages are available in this fashion.
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Some R Resources

Available from CRAN (http://cran.r-project.org)

An Introduction to R

Writing R Extensions

R Data Import/Export

R Installation and Administration (mostly for building R from sources)

R Internals (not for the faint of heart)
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Some Useful Books on S/R

Standard texts

Chambers (2008). Software for Data Analysis, Springer. (your textbook)

Chambers (1998). Programming with Data, Springer.

Venables & Ripley (2002). Modern Applied Statistics with S, Springer.

Venables & Ripley (2000). S Programming, Springer.

Pinheiro & Bates (2000). Mixed-Effects Models in S and S-PLUS, Springer.

Murrell (2005). R Graphics, Chapman & Hall/CRC Press.

Other resources

Springer has a series of books called Use R!.

A longer list of books is at http://www.r-project.org/doc/bib/R-books.html
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Objects

R has five basic or “atomic” classes of objects:

character

numeric (real numbers)

integer

complex

logical (True/False)

The most basic object is a vector

A vector can only contain objects of the same class

BUT: The one exception is a list, which is represented as a vector but can contain
objects of different classes (indeed, that’s usually why we use them)

Empty vectors can be created with the vector() function.
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Numbers

Numbers in R a generally treated as numeric objects (i.e. double precision real
numbers)

If you explicitly want an integer, you need to specify the L suffix

Ex: Entering 1 gives you a numeric object; entering 1L explicitly gives you an
integer.

There is also a special number Inf which represents infinity; e.g. 1 / 0; Inf can
be used in ordinary calculations; e.g. 1 / Inf is 0

The value NaN represents an undefined value (“not a number”); e.g. 0 / 0; NaN
can also be thought of as a missing value (more on that later)
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Attributes

R objects can have attributes

names, dimnames

dimensions (e.g. matrices, arrays)

class

length

other user-defined attributes/metadata

Attributes of an object can be accessed using the attributes() function.
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Entering Input

At the R prompt we type expressions. The <- symbol is the assignment operator.

> x <- 1

> print(x)

[1] 1

> x

[1] 1

> msg <- "hello"

The grammar of the language determines whether an expression is complete or not.

> x <- ## Incomplete expression

The # character indicates a comment. Anything to the right of the # (including the #

itself) is ignored.
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Evaluation

When a complete expression is entered at the prompt, it is evaluated and the result of
the evaluated expression is returned. The result may be auto-printed.

> x <- 5 ## nothing printed

> x ## auto-printing occurs

[1] 5

> print(x) ## explicit printing

[1] 5

The [1] indicates that x is a vector and 5 is the first element.
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Printing

> x <- 1:20

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[16] 16 17 18 19 20

The : operator is used to create integer sequences.
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Creating Vectors

The c() function can be used to create vectors of objects.

> x <- c(0.5, 0.6) ## numeric

> x <- c(TRUE, FALSE) ## logical

> x <- c(T, F) ## logical

> x <- c("a", "b", "c") ## character

> x <- 9:29 ## integer

> x <- c(1+0i, 2+4i) ## complex

Using the vector() function

> x <- vector("numeric", length = 10)

> x

[1] 0 0 0 0 0 0 0 0 0 0
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Mixing Objects

What about the following?

> y <- c(1.7, "a") ## character

> y <- c(TRUE, 2) ## numeric

> y <- c("a", TRUE) ## character

When different objects are mixed in a vector, coercion occurs so that every element in
the vector is of the same class.

9 / 27



Explicit Coercion

Objects can be explicitly coerced from one class to another using the as.* functions, if
available.

> x <- 0:6

> class(x)

[1] "integer"

> as.numeric(x)

[1] 0 1 2 3 4 5 6

> as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

> as.complex(x)

[1] 0+0i 1+0i 2+0i 3+0i 4+0i 5+0i 6+0i
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Explicit Coercion

Nonsensical coercion results in NAs.

> x <- c("a", "b", "c")

> as.numeric(x)

[1] NA NA NA

Warning message:

NAs introduced by coercion

> as.logical(x)

[1] NA NA NA
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Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an
integer vector of length 2 (nrow, ncol)

> m <- matrix(nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

> dim(m)

[1] 2 3

> attributes(m)

$dim

[1] 2 3
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Matrices (cont’d)

Matrices are constructed column-wise, so entries can be thought of starting in the
“upper left” corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6
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Matrices (cont’d)

Matrices can also be created directly from vectors by adding a dimension attribute.

> m <- 1:10

> m

[1] 1 2 3 4 5 6 7 8 9 10

> dim(m) <- c(2, 5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10
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cbind-ing and rbind-ing

Matrices can be created by column-binding or row-binding with cbind() and
rbind().

> x <- 1:3

> y <- 10:12

> cbind(x, y)

x y

[1,] 1 10

[2,] 2 11

[3,] 3 12

> rbind(x, y)

[,1] [,2] [,3]

x 1 2 3

y 10 11 12

15 / 27



Lists

Lists are a special type of vector that can contain elements of different classes. Lists
are a very important data type in R and you should get to know them well.

> x <- list(1, "a", TRUE, 1 + 4i)

> x

[[1]]

[1] 1

[[2]]

[1] "a"

[[3]]

[1] TRUE

[[4]]

[1] 1+4i
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Factors

Factors are used to represent categorical data. Factors can be unordered or ordered.
One can think of a factor as an integer vector where each integer has a label.

Factors are treated specially by modelling functions like lm() and glm()

Using factors with labels is better than using integers because factors are
self-describing; having a variable that has values “Male” and “Female” is better
than a variable that has values 1 and 2.
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Factors

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x

[1] yes yes no yes no

Levels: no yes

> table(x)

x

no yes

2 3

> unclass(x)

[1] 2 2 1 2 1

attr(,"levels")

[1] "no" "yes"
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Factors

The order of the levels can be set using the levels argument to factor(). This can
be important in linear modelling because the first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"),

levels = c("yes", "no"))

> x

[1] yes yes no yes no

Levels: yes no
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Missing Values

Missing values are denoted by NA or NaN for undefined mathematical operations.

is.na() is used to test objects if they are NA

is.nan() is used to test for NaN

NA values have a class also, so there are integer NA, character NA, etc.

A NaN value is also NA but the converse is not true
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Missing Values

> x <- c(1, 2, NA, 10, 3)

> is.na(x)

[1] FALSE FALSE TRUE FALSE FALSE

> is.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE

> x <- c(1, 2, NaN, NA, 4)

> is.na(x)

[1] FALSE FALSE TRUE TRUE FALSE

> is.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

21 / 27



Data Frames

Data frames are used to store tabular data

They are represented as a special type of list where every element of the list has
to have the same length

Each element of the list can be thought of as a column and the length of each
element of the list is the number of rows

Unlike matrices, data frames can store different classes of objects in each column
(just like lists); matrices must have every element be the same class

Data frames also have a special attribute called row.names

Data frames are usually created by calling read.table() or read.csv()

Can be converted to a matrix by calling data.matrix()
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Data Frames

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))

> x

foo bar

1 1 TRUE

2 2 TRUE

3 3 FALSE

4 4 FALSE

> nrow(x)

[1] 4

> ncol(x)

[1] 2
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Names

R objects can also have names, which is very useful for writing readable code and
self-describing objects.

> x <- 1:3

> names(x)

NULL

> names(x) <- c("foo", "bar", "norf")

> x

foo bar norf

1 2 3

> names(x)

[1] "foo" "bar" "norf"
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Names

Lists can also have names.

> x <- list(a = 1, b = 2, c = 3)

> x

$a

[1] 1

$b

[1] 2

$c

[1] 3
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Names

And matrices.

> m <- matrix(1:4, nrow = 2, ncol = 2)

> dimnames(m) <- list(c("a", "b"), c("c", "d"))

> m

c d

a 1 3

b 2 4
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Summary

Data Types

atomic classes: numeric, logical, character, integer, complex

vectors, lists

factors

missing values

data frames

names
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Subsetting

There are a number of operators that can be used to extract subsets of R objects.

[ always returns an object of the same class as the original; can be used to select
more than one element (there is one exception)

[[ is used to extract elements of a list or a data frame; it can only be used to
extract a single element and the class of the returned object will not necessarily be
a list or data frame

$ is used to extract elements of a list or data frame by name; semantics are
similar to hat of [[.
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Subsetting

> x <- c("a", "b", "c", "c", "d", "a")

> x[1]

[1] "a"

> x[2]

[1] "b"

> x[1:4]

[1] "a" "b" "c" "c"

> x[x > "a"]

[1] "b" "c" "c" "d"

> u <- x > "a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b" "c" "c" "d"
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Subsetting a Matrix

Matrices can be subsetted in the usual way with (i , j) type indices.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

Indices can also be missing.

> x[1, ]

[1] 1 3 5

> x[, 2]

[1] 3 4

4 / 14



Subsetting a Matrix

By default, when a single element of a matrix is retrieved, it is returned as a vector of
length 1 rather than a 1 × 1 matrix. This behavior can be turned off by setting drop =

FALSE.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[1, 2, drop = FALSE]

[,1]

[1,] 3
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Subsetting a Matrix

Similarly, subsetting a single column or a single row will give you a vector, not a matrix
(by default).

> x <- matrix(1:6, 2, 3)

> x[1, ]

[1] 1 3 5

> x[1, , drop = FALSE]

[,1] [,2] [,3]

[1,] 1 3 5
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Subsetting Lists

> x <- list(foo = 1:4, bar = 0.6)

> x[1]

$foo

[1] 1 2 3 4

> x[[1]]

[1] 1 2 3 4

> x$bar

[1] 0.6

> x[["bar"]]

[1] 0.6

> x["bar"]

$bar

[1] 0.6
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Subsetting Lists

Extracting multiple elements of a list.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$foo

[1] 1 2 3 4

$baz

[1] "hello"
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Subsetting Lists

The [[ operator can be used with computed indices; $ can only be used with literal
names.

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

> x[[name]] ## computed index for ‘foo’

[1] 1 2 3 4

> x$name ## element ‘name’ doesn’t exist!

NULL

> x$foo

[1] 1 2 3 4 ## element ‘foo’ does exist
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Subsetting Nested Elements of a List

The [[ can take an integer sequence.

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

> x[[c(1, 3)]]

[1] 14

> x[[1]][[3]]

[1] 14

> x[[c(2, 1)]]

[1] 3.14

10 / 14



Partial Matching

Partial matching of names is allowed with [[ and $.

> x <- list(aardvark = 1:5)

> x$a

[1] 1 2 3 4 5

> x[["a"]]

NULL

> x[["a", exact = FALSE]]

[1] 1 2 3 4 5
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Removing NA Values

A common task is to remove missing values (NAs).

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> x[!bad]

[1] 1 2 4 5
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Removing NA Values

What if there are multiple things and you want to take the subset with no missing
values?

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

> x[good]

[1] 1 2 4 5

> y[good]

[1] "a" "b" "d" "f"
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Removing NA Values

> airquality[1:6, ]

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

> good <- complete.cases(airquality)

> airquality[good, ][1:6, ]

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

8 19 99 13.8 59 5 8
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Vectorized Operations

Many operations in R are vectorized making code more efficient, concise, and easier to
read.

> x <- 1:4; y <- 6:9

> x + y

[1] 7 9 11 13

> x > 2

[1] FALSE FALSE TRUE TRUE

> x >= 2

[1] FALSE TRUE TRUE TRUE

> y == 8

[1] FALSE FALSE TRUE FALSE

> x * y

[1] 6 14 24 36

> x / y

[1] 0.1666667 0.2857143 0.3750000 0.4444444
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Vectorized Matrix Operations

> x <- matrix(1:4, 2, 2); y <- matrix(rep(10, 4), 2, 2)

> x * y ## element-wise multiplication

[,1] [,2]

[1,] 10 30

[2,] 20 40

> x / y

[,1] [,2]

[1,] 0.1 0.3

[2,] 0.2 0.4

> x %*% y ## true matrix multiplication

[,1] [,2]

[1,] 40 40

[2,] 60 60
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Reading Data

There are a few principal functions reading data into R.

read.table, read.csv, for reading tabular data

readLines, for reading lines of a text file

source, for reading in R code files (inverse of dump)

dget, for reading in R code files (inverse of dput)

load, for reading in saved workspaces

unserialize, for reading single R objects in binary form
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Writing Data

There are analogous functions for writing data to files

write.table

writeLines

dump

dput

save

serialize
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Reading Data Files with read.table

The read.table function is one of the most commonly used functions for reading
data. It has a few important arguments:

file, the name of a file, or a connection

header, logical indicating if the file has a header line

sep, a string indicating how the columns are separated

colClasses, a character vector indicating the class of each column in the dataset

nrows, the number of rows in the dataset

comment.char, a character string indicating the comment character

skip, the number of lines to skip from the beginning

stringsAsFactors, should character variables be coded as factors?

4 / 22



read.table

For small to moderately sized datasets, you can usually call read.table without
specifying any other arguments

data <- read.table("foo.txt")

R will automatically

skip lines that begin with a #

figure out how many rows there are (and how much memory needs to be
allocated)

figure what type of variable is in each column of the table

Telling R all these things directly makes R run faster and more e�ciently.

read.csv is identical to read.table except that the default separator is a
comma.
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Reading in Larger Datasets with read.table

With much larger datasets, doing the following things will make your life easier and
will prevent R from choking.

Read the help page for read.table, which contains many hints

Make a rough calculation of the memory required to store your dataset. If the
dataset is larger than the amount of RAM on your computer, you can probably
stop right here.

Set comment.char = "" if there are no commented lines in your file.
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Reading in Larger Datasets with read.table

Use the colClasses argument. Specifying this option instead of using the default
can make ’read.table’ run MUCH faster, often twice as fast. In order to use this
option, you have to know the class of each column in your data frame. If all of
the columns are “numeric”, for example, then you can just set colClasses =

"numeric". A quick an dirty way to figure out the classes of each column is the
following:

initial <- read.table("datatable.txt", nrows = 100)

classes <- sapply(initial, class)

tabAll <- read.table("datatable.txt",

colClasses = classes)

Set nrows. This doesn’t make R run faster but it helps with memory usage. A
mild overestimate is okay. You can use the Unix tool wc to calculate the number
of lines in a file.
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Know Thy System

In general, when using R with larger datasets, it’s useful to know a few things about
your system.

How much memory is available?

What other applications are in use?

Are there other users logged into the same system?

What operating system?

Is the OS 32 or 64 bit?
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Calculating Memory Requirements

I have a data frame with 1,500,000 rows and 120 columns, all of which are numeric
data. Roughly, how much memory is required to store this data frame?

1, 500, 000⇥ 120⇥ 8 bytes/numeric = 1440000000 bytes

= 1440000000/220 bytes/MB

= 1, 373.29 MB

= 1.34 GB
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Textual Formats

dumping and dputing are useful because the resulting textual format is edit-able,
and in the case of corruption, potentially recoverable.

Unlike writing out a table or csv file, dump and dput preserve the metadata

(sacrificing some readability), so that another user doesn’t have to specify it all
over again.

Textual formats can work much better with version control programs like
subversion or git which can only track changes meaningfully in text files

Textual formats can be longer-lived; if there is corruption somewhere in the file, it
can be easier to fix the problem

Textual formats adhere to the “Unix philosophy”

Downside: The format is not very space-e�cient
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dput-ting R Objects

Another way to pass data around is by deparsing the R object with dput and reading it
back in using dget.

> y <- data.frame(a = 1, b = "a")

> dput(y)

structure(list(a = 1,

b = structure(1L, .Label = "a",

class = "factor")),

.Names = c("a", "b"), row.names = c(NA, -1L),

class = "data.frame")

> dput(y, file = "y.R")

> new.y <- dget("y.R")

> new.y

a b

1 1 a
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Dumping R Objects

Multiple objects can be deparsed using the dump function and read back in using
source.

> x <- "foo"

> y <- data.frame(a = 1, b = "a")

> dump(c("x", "y"), file = "data.R")

> rm(x, y)

> source("data.R")

> y

a b

1 1 a

> x

[1] "foo"
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Interfaces to the Outside World

Data are read in using connection interfaces. Connections can be made to files (most
common) or to other more exotic things.

file, opens a connection to a file

gzfile, opens a connection to a file compressed with gzip

bzfile, opens a connection to a file compressed with bzip2

url, opens a connection to a webpage
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File Connections

> str(file)

function (description = "", open = "", blocking = TRUE,

encoding = getOption("encoding"))

description is the name of the file

open is a code indicating
“r” read only
“w” writing (and initializing a new file)
“a” appending
“rb”, “wb”, “ab” reading, writing, or appending in binary mode (Windows)
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Connections

In general, connections are powerful tools that let you navigate files or other external
objects. In practice, we often don’t need to deal with the connection interface directly.

con <- file("foo.txt", "r")

data <- read.csv(con)

close(con)

is the same as

data <- read.csv("foo.txt")
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Reading Lines of a Text File

The readLines function can be used to simply read lines of a text file and store them
in a character vector.

> con <- gzfile("words.gz")

> x <- readLines(con, 10)

> x

[1] "1080" "10-point" "10th" "11-point"

[5] "12-point" "16-point" "18-point" "1st"

[9] "2" "20-point"

writeLines takes a character vector and writes each element one line at a time to a
text file.
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Reading Lines of a Text File

readLines can be useful for reading in lines of webpages

## This might take time

con <- url("http://www.jhsph.edu", "r")

x <- readLines(con)

> head(x)

[1] "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transitional//EN\">"

[2] ""

[3] "<html>"

[4] "<head>"

[5] "\t<meta http-equiv=\"Content-Type\" content=\"text/html;charset=utf-8\" />"[6] "\t"
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Control Structures

Control structures in R allow you to control the flow of execution of the program,
depending on runtime conditions. Common structures are

if, else: testing a condition

for: execute a loop a fixed number of times

while: execute a loop while a condition is true

repeat: execute an infinite loop

break: break the execution of a loop

next: skip an interation of a loop

return: exit a function

Most control structures are not used in interactive sessions, but rather when writing
functions or longer expresisons.
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Control Structures: if

if(<condition>) {

## do something

} else {

## do something else

}

if(<condition1>) {

## do something

} else if(<condition2>) {

## do something different

} else {

## do something different

}
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if

This is a valid if/else structure.

if(x > 3) {

y <- 10

} else {

y <- 0

}

So is this one.

y <- if(x > 3) {

10

} else {

0

}

4 / 14



if

Of course, the else clause is not necessary.

if(<condition1>) {

}

if(<condition2>) {

}
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for

for loops take an interator variable and assign it successive values from a sequence or
vector. For loops are most commonly used for iterating over the elements of an object
(list, vector, etc.)

for(i in 1:10) {

print(i)

}

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3,
..., 10, and then exits.
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for

These three loops have the same behavior.

x <- c("a", "b", "c", "d")

for(i in 1:4) {

print(x[i])

}

for(i in seq_along(x)) {

print(x[i])

}

for(letter in x) {

print(letter)

}

for(i in 1:4) print(x[i])
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Nested for loops

for loops can be nested.

x <- matrix(1:6, 2, 3)

for(i in seq_len(nrow(x))) {

for(j in seq_len(ncol(x))) {

print(x[i, j])

}

}

Be careful with nesting though. Nesting beyond 2–3 levels is often very difficult to
read/understand.
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while

While loops begin by testing a condition. If it is true, then they execute the loop body.
Once the loop body is executed, the condition is tested again, and so forth.

count <- 0

while(count < 10) {

print(count)

count <- count + 1

}

While loops can potentially result in infinite loops if not written properly. Use with
care!
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while

Sometimes there will be more than one condition in the test.

z <- 5

while(z >= 3 && z <= 10) {

print(z)

coin <- rbinom(1, 1, 0.5)

if(coin == 1) { ## random walk

z <- z + 1

} else {

z <- z - 1

}

}

Conditions are always evaluated from left to right.
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repeat

Repeat initiates an infinite loop; these are not commonly used in statistical applications
but they do have their uses. The only way to exit a repeat loop is to call break.

x0 <- 1

tol <- 1e-8

repeat {

x1 <- computeEstimate()

if(abs(x1 - x0) < tol) {

break

} else {

x0 <- x1

}

}
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repeat

The loop in the previous slide is a bit dangerous because there’s no guarantee it will
stop. Better to set a hard limit on the number of iterations (e.g. using a for loop) and
then report whether convergence was achieved or not.
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next, return

next is used to skip an iteration of a loop

for(i in 1:100) {

if(i <= 20) {

## Skip the first 20 iterations

next

}

## Do something here

}

return signals that a function should exit and return a given value
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Control Structures

Summary

Control structures like if, while, and for allow you to control the flow of an R
program

Infinite loops should generally be avoided, even if they are theoretically correct.

Control structures mentiond here are primarily useful for writing programs; for
command-line interactive work, the *apply functions are more useful.
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Functions

Functions are created using the function() directive and are stored as R objects just
like anything else. In particular, they are R objects of class “function”.

f <- function(<arguments>) {

## Do something interesting

}

Functions in R are “first class objects”, which means that they can be treated much
like any other R object. Importantly,

Functions can be passed as arguments to other functions

Functions can be nested, so that you can define a function inside of another
function

The return value of a function is the last expression in the function body to be
evaluated.
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Function Arguments

Functions have named arguments which potentially have default values.

The formal arguments are the arguments included in the function definition

The formals function returns a list of all the formal arguments of a function

Not every function call in R makes use of all the formal arguments

Function arguments can be missing or might have default values
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Argument Matching

R functions arguments can be matched positionally or by name. So the following calls
to sd are all equivalent

> mydata <- rnorm(100)

> sd(mydata)

> sd(x = mydata)

> sd(x = mydata, na.rm = FALSE)

> sd(na.rm = FALSE, x = mydata)

> sd(na.rm = FALSE, mydata)

Even though it’s legal, I don’t recommend messing around with the order of the
arguments too much, since it can lead to some confusion.
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Argument Matching

You can mix positional matching with matching by name. When an argument is
matched by name, it is “taken out” of the argument list and the remaining unnamed
arguments are matched in the order that they are listed in the function definition.

> args(lm)

function (formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE,

y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

The following two calls are equivalent.

lm(data = mydata, y ~ x, model = FALSE, 1:100)

lm(y ~ x, mydata, 1:100, model = FALSE)
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Argument Matching

Most of the time, named arguments are useful on the command line when you
have a long argument list and you want to use the defaults for everything except
for an argument near the end of the list

Named arguments also help if you can remember the name of the argument and
not its position on the argument list (plotting is a good example).
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Argument Matching

Function arguments can also be partially matched, which is useful for interactive work.
The order of operations when given an argument is

1 Check for exact match for a named argument

2 Check for a partial match

3 Check for a positional match
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Defining a Function

f <- function(a, b = 1, c = 2, d = NULL) {

}

In addition to not specifying a default value, you can also set an argument value to
NULL.
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Lazy Evaluation

Arguments to functions are evaluated lazily, so they are evaluated only as needed.

f <- function(a, b) {

a^2

}

f(2)

This function never actually uses the argument b, so calling f(2) will not produce an
error because the 2 gets positionally matched to a.
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Lazy Evaluation

Another example

f <- function(a, b) {

print(a)

print(b)

}

> f(45)

[1] 45

Error in print(b) : argument "b" is missing, with no default

>

Notice that “45” got printed first before the error was triggered. This is because b did
not have to be evaluated until after print(a). Once the function tried to evaluate
print(b) it had to throw an error.
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The “...” Argument

The ... argument indicate a variable number of arguments that are usually passed on
to other functions.

... is often used when extending another function and you don’t want to copy
the entire argument list of the original function

myplot <- function(x, y, type = "l", ...) {

plot(x, y, type = type, ...)

}

Generic functions use ... so that extra arguments can be passed to methods
(more on this later).

> mean

function (x, ...)

UseMethod("mean")
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The “...” Argument

The ... argument is also necessary when the number of arguments passed to the
function cannot be known in advance.

> args(paste)

function (..., sep = " ", collapse = NULL)

> args(cat)

function (..., file = "", sep = " ", fill = FALSE,

labels = NULL, append = FALSE)
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Arguments Coming After the “...” Argument

One catch with ... is that any arguments that appear after ... on the argument list
must be named explicitly and cannot be partially matched.

> args(paste)

function (..., sep = " ", collapse = NULL)

> paste("a", "b", sep = ":")

[1] "a:b"

> paste("a", "b", se = ":")

[1] "a b :"
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A Diversion on Binding Values to Symbol

How does R know which value to assign to which symbol? When I type

> lm <- function(x) { x * x }

> lm

function(x) { x * x }

how does R know what value to assign to the symbol lm? Why doesn’t it give it the
value of lm that is in the stats package?
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A Diversion on Binding Values to Symbol

When R tries to bind a value to a symbol, it searches through a series of
environments to find the appropriate value. When you are working on the command
line and need to retrieve the value of an R object, the order is roughly

1 Search the global environment for a symbol name matching the one requested.

2 Search the namespaces of each of the packages on the search list

The search list can be found by using the search function.

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"
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Binding Values to Symbol

The global environment or the user’s workspace is always the first element of the
search list and the base package is always the last.

The order of the packages on the search list matters!

User’s can configure which packages get loaded on startup so you cannot assume
that there will be a set list of packages available.

When a user loads a package with library the namespace of that package gets
put in position 2 of the search list (by default) and everything else gets shifted
down the list.

Note that R has separate namespaces for functions and non-functions so it’s
possible to have an object named c and a function named c.
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Scoping Rules

The scoping rules for R are the main feature that make it di↵erent from the original S
language.

The scoping rules determine how a value is associated with a free variable in a
function

R uses lexical scoping or static scoping. A common alternative is dynamic scoping.

Related to the scoping rules is how R uses the search list to bind a value to a
symbol

Lexical scoping turns out to be particularly useful for simplifying statistical
computations
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Lexical Scoping

Consider the following function.

f <- function(x, y) {

x^2 + y / z

}

This function has 2 formal arguments x and y. In the body of the function there is
another symbol z. In this case z is called a free variable.
The scoping rules of a language determine how values are assigned to free variables.
Free variables are not formal arguments and are not local variables (assigned insided
the function body).
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Lexical Scoping

Lexical scoping in R means that

the values of free variables are searched for in the environment in which the

function was defined.

What is an environment?

An environment is a collection of (symbol, value) pairs, i.e. x is a symbol and
3.14 might be its value.

Every environment has a parent environment; it is possible for an environment to
have multiple “children”

the only environment without a parent is the empty environment

A function + an environment = a closure or function closure.
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Lexical Scoping

Searching for the value for a free variable:

If the value of a symbol is not found in the environment in which a function was
defined, then the search is continued in the parent environment.

The search continues down the sequence of parent environments until we hit the
top-level environment; this usually the global environment (workspace) or the
namespace of a package.

After the top-level environment, the search continues down the search list until we
hit the empty environment.

If a value for a given symbol cannot be found once the empty environment is
arrived at, then an error is thrown.
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Lexical Scoping

Why does all this matter?

Typically, a function is defined in the global environment, so that the values of
free variables are just found in the user’s workspace

This behavior is logical for most people and is usually the “right thing” to do

However, in R you can have functions defined inside other functions

Languages like C don’t let you do this

Now things get interesting — In this case the environment in which a function is
defined is the body of another function!
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Lexical Scoping

make.power <- function(n) {

pow <- function(x) {

x^n

}

pow

}

This function returns another function as its value.

> cube <- make.power(3)

> square <- make.power(2)

> cube(3)

[1] 27

> square(3)

[1] 9
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Exploring a Function Closure

What’s in a function’s environment?

> ls(environment(cube))

[1] "n" "pow"

> get("n", environment(cube))

[1] 3

> ls(environment(square))

[1] "n" "pow"

> get("n", environment(square))

[1] 2
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Lexical vs. Dynamic Scoping

y <- 10

f <- function(x) {

y <- 2

y^2 + g(x)

}

g <- function(x) {

x * y

}

What is the value of

f(3)
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Lexical vs. Dynamic Scoping

With lexical scoping the value of y in the function g is looked up in the
environment in which the function was defined, in this case the global
environment, so the value of y is 10.

With dynamic scoping, the value of y is looked up in the environment from which
the function was called (sometimes referred to as the calling environment).

In R the calling environment is known as the parent frame

So the value of y would be 2.
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Lexical vs. Dynamic Scoping

When a function is defined in the global environment and is subsequently called from
the global environment, then the defining environment and the calling environment are
the same. This can sometimes give the appearance of dynamic scoping.

> g <- function(x) {

+ a <- 3

+ x + a + y

+ }

> g(2)

Error in g(2) : object "y" not found

> y <- 3

> g(2)

[1] 8
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Other Languages

Other languages that support lexical scoping

Scheme

Perl

Python

Common Lisp (all languages converge to Lisp)
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Consequences of Lexical Scoping

In R, all objects must be stored in memory

All functions must carry a pointer to their respective defining environments, which
could be anywhere

In S-PLUS, free variables are always looked up in the global workspace, so
everything can be stored on the disk because the “defining environment” of all
functions is the same.
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Application: Optimization

Why is any of this information useful?

Optimization routines in R like optim, nlm, and optimize require you to pass a
function whose argument is a vector of parameters (e.g. a log-likelihood)

However, an object function might depend on a host of other things besides its
parameters (like data)

When writing software which does optimization, it may be desirable to allow the
user to hold certain parameters fixed
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Maximizing a Normal Likelihood

Write a “constructor” function

make.NegLogLik <- function(data, fixed=c(FALSE,FALSE)) {

params <- fixed

function(p) {

params[!fixed] <- p

mu <- params[1]

sigma <- params[2]

a <- -0.5*length(data)*log(2*pi*sigma^2)

b <- -0.5*sum((data-mu)^2) / (sigma^2)

-(a + b)

}

}

Note: Optimization functions in R minimize functions, so you need to use the
negative log-likelihood.
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Maximizing a Normal Likelihood

> set.seed(1); normals <- rnorm(100, 1, 2)

> nLL <- make.NegLogLik(normals)

> nLL

function(p) {

params[!fixed] <- p

mu <- params[1]

sigma <- params[2]

a <- -0.5*length(data)*log(2*pi*sigma^2)

b <- -0.5*sum((data-mu)^2) / (sigma^2)

-(a + b)

}

<environment: 0x165b1a4>

> ls(environment(nLL))

[1] "data" "fixed" "params"
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Estimating Parameters

> optim(c(mu = 0, sigma = 1), nLL)$par

mu sigma

1.218239 1.787343

Fixing � = 2

> nLL <- make.NegLogLik(normals, c(FALSE, 2))

> optimize(nLL, c(-1, 3))$minimum

[1] 1.217775

Fixing µ = 1

> nLL <- make.NegLogLik(normals, c(1, FALSE))

> optimize(nLL, c(1e-6, 10))$minimum

[1] 1.800596
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Plotting the Likelihood

nLL <- make.NegLogLik(normals, c(1, FALSE))

x <- seq(1.7, 1.9, len = 100)

y <- sapply(x, nLL)

plot(x, exp(-(y - min(y))), type = "l")

nLL <- make.NegLogLik(normals, c(FALSE, 2))

x <- seq(0.5, 1.5, len = 100)

y <- sapply(x, nLL)

plot(x, exp(-(y - min(y))), type = "l")
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Plotting the Likelihood
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Plotting the Likelihood
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Lexical Scoping Summary

Objective functions can be “built” which contain all of the necessary data for
evaluating the function

No need to carry around long argument lists — useful for interactive and
exploratory work.

Code can be simplified and cleand up

Reference: Robert Gentleman and Ross Ihaka (2000). “Lexical Scope and
Statistical Computing,” JCGS, 9, 491–508.
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Application: Optimization

Why is any of this information useful?

Optimization routines in R like optim, nlm, and optimize require you to pass a
function whose argument is a vector of parameters (e.g. a log-likelihood)

However, an object function might depend on a host of other things besides its
parameters (like data)

When writing software which does optimization, it may be desirable to allow the
user to hold certain parameters fixed
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Maximizing a Normal Likelihood

Write a “constructor” function

make.NegLogLik <- function(data, fixed=c(FALSE,FALSE)) {

params <- fixed

function(p) {

params[!fixed] <- p

mu <- params[1]

sigma <- params[2]

a <- -0.5*length(data)*log(2*pi*sigma^2)

b <- -0.5*sum((data-mu)^2) / (sigma^2)

-(a + b)

}

}

Note: Optimization functions in R minimize functions, so you need to use the
negative log-likelihood.
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Maximizing a Normal Likelihood

> set.seed(1); normals <- rnorm(100, 1, 2)

> nLL <- make.NegLogLik(normals)

> nLL

function(p) {

params[!fixed] <- p

mu <- params[1]

sigma <- params[2]

a <- -0.5*length(data)*log(2*pi*sigma^2)

b <- -0.5*sum((data-mu)^2) / (sigma^2)

-(a + b)

}

<environment: 0x165b1a4>

> ls(environment(nLL))

[1] "data" "fixed" "params"
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Estimating Parameters

> optim(c(mu = 0, sigma = 1), nLL)$par

mu sigma

1.218239 1.787343

Fixing � = 2

> nLL <- make.NegLogLik(normals, c(FALSE, 2))

> optimize(nLL, c(-1, 3))$minimum

[1] 1.217775

Fixing µ = 1

> nLL <- make.NegLogLik(normals, c(1, FALSE))

> optimize(nLL, c(1e-6, 10))$minimum

[1] 1.800596
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Plotting the Likelihood

nLL <- make.NegLogLik(normals, c(1, FALSE))

x <- seq(1.7, 1.9, len = 100)

y <- sapply(x, nLL)

plot(x, exp(-(y - min(y))), type = "l")

nLL <- make.NegLogLik(normals, c(FALSE, 2))

x <- seq(0.5, 1.5, len = 100)

y <- sapply(x, nLL)

plot(x, exp(-(y - min(y))), type = "l")
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Plotting the Likelihood
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Lexical Scoping Summary

Objective functions can be “built” which contain all of the necessary data for
evaluating the function

No need to carry around long argument lists — useful for interactive and
exploratory work.

Code can be simplified and cleand up

Reference: Robert Gentleman and Ross Ihaka (2000). “Lexical Scope and
Statistical Computing,” JCGS, 9, 491–508.
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Looping on the Command Line

Writing for, while loops is useful when programming but not particularly easy when

working interactively on the command line. There are some functions which implement

looping to make life easier.

lapply: Loop over a list and evaluate a function on each element

sapply: Same as lapply but try to simplify the result

apply: Apply a function over the margins of an array

tapply: Apply a function over subsets of a vector

mapply: Multivariate version of lapply

An auxiliary function split is also useful, particularly in conjunction with lapply.

The R Language



lapply

lapply takes three arguments: a list X, a function (or the name of a function) FUN,

and other arguments via its ... argument. If X is not a list, it will be coerced to a list

using as.list.

> lapply

function (X, FUN, ...)

{

FUN <- match.fun(FUN)

if (!is.vector(X) || is.object(X))

X <- as.list(X)

.Internal(lapply(X, FUN))

}

The actual looping is done internally in C code.
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lapply

lapply always returns a list, regardless of the class of the input.

> x <- list(a = 1:5, b = rnorm(10))

> lapply(x, mean)

$a

[1] 3

$b

[1] 0.0296824

The R Language



lapply

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] 0.06082667

$c

[1] 1.467083

$d

[1] 5.074749

The R Language



lapply

> x <- 1:4

> lapply(x, runif)

[[1]]

[1] 0.2675082

[[2]]

[1] 0.2186453 0.5167968

[[3]]

[1] 0.2689506 0.1811683 0.5185761

[[4]]

[1] 0.5627829 0.1291569 0.2563676 0.7179353
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lapply

> x <- 1:4

> lapply(x, runif, min = 0, max = 10)

[[1]]

[1] 3.302142

[[2]]

[1] 6.848960 7.195282

[[3]]

[1] 3.5031416 0.8465707 9.7421014

[[4]]

[1] 1.195114 3.594027 2.930794 2.766946
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lapply

lapply and friends make heavy use of anonymous functions.

> x <- list(a = matrix(1:4, 2, 2), b = matrix(1:6, 3, 2))

> x

$a

[,1] [,2]

[1,] 1 3

[2,] 2 4

$b

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6
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lapply

An anonymous function for extracting the first column of each matrix.

> lapply(x, function(elt) elt[,1])

$a

[1] 1 2

$b

[1] 1 2 3

The R Language



sapply

sapply will try to simplify the result of lapply if possible.

If the result is a list where every element is length 1, then a vector is returned

If the result is a list where every element is a vector of the same length (> 1), a

matrix is returned.

If it can’t figure things out, a list is returned

The R Language



sapply

> x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5))

> lapply(x, mean)

$a

[1] 2.5

$b

[1] 0.06082667

$c

[1] 1.467083

$d

[1] 5.074749
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sapply

> sapply(x, mean)

a b c d

2.50000000 0.06082667 1.46708277 5.07474950

> mean(x)

[1] NA

Warning message:

In mean.default(x) : argument is not numeric or logical: returning NA

The R Language



apply

apply is used to a evaluate a function (often an anonymous one) over the margins of

an array.

It is most often used to apply a function to the rows or columns of a matrix

It can be used with general arrays, e.g. taking the average of an array of matrices

It is not really faster than writing a loop, but it works in one line!

The R Language



apply

> str(apply)

function (X, MARGIN, FUN, ...)

X is an array

MARGIN is an integer vector indicating which margins should be “retained”.

FUN is a function to be applied

... is for other arguments to be passed to FUN

The R Language



apply

> x <- matrix(rnorm(200), 20, 10)

> apply(x, 2, mean)

[1] 0.04868268 0.35743615 -0.09104379

[4] -0.05381370 -0.16552070 -0.18192493

[7] 0.10285727 0.36519270 0.14898850

[10] 0.26767260

> apply(x, 1, sum)

[1] -1.94843314 2.60601195 1.51772391

[4] -2.80386816 3.73728682 -1.69371360

[7] 0.02359932 3.91874808 -2.39902859

[10] 0.48685925 -1.77576824 -3.34016277

[13] 4.04101009 0.46515429 1.83687755

[16] 4.36744690 2.21993789 2.60983764

[19] -1.48607630 3.58709251
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col/row sums and means

For sums and means of matrix dimensions, we have some shortcuts.

rowSums = apply(x, 1, sum)

rowMeans = apply(x, 1, mean)

colSums = apply(x, 2, sum)

colMeans = apply(x, 2, mean)

The shortcut functions are much faster, but you won’t notice unless you’re using a

large matrix.
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Other Ways to Apply

Quantiles of the rows of a matrix.

> x <- matrix(rnorm(200), 20, 10)

> apply(x, 1, quantile, probs = c(0.25, 0.75))

[,1] [,2] [,3] [,4]

25% -0.3304284 -0.99812467 -0.9186279 -0.49711686

75% 0.9258157 0.07065724 0.3050407 -0.06585436

[,5] [,6] [,7] [,8]

25% -0.05999553 -0.6588380 -0.653250 0.01749997

75% 0.52928743 0.3727449 1.255089 0.72318419

[,9] [,10] [,11] [,12]

25% -1.2467955 -0.8378429 -1.0488430 -0.7054902

75% 0.3352377 0.7297176 0.3113434 0.4581150

[,13] [,14] [,15] [,16]

25% -0.1895108 -0.5729407 -0.5968578 -0.9517069

75% 0.5326299 0.5064267 0.4933852 0.8868922

[,17] [,18] [,19] [,20]

25% -0.2502935 -0.7488003 -0.7190923 -0.638243

75% 0.7763024 0.2873202 0.6416363 1.271602
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apply

Average matrix in an array

> a <- array(rnorm(2 * 2 * 10), c(2, 2, 10))

> apply(a, c(1, 2), mean)

[,1] [,2]

[1,] -0.2353245 -0.03980211

[2,] -0.3339748 0.04364908

> rowMeans(a, dims = 2)

[,1] [,2]

[1,] -0.2353245 -0.03980211

[2,] -0.3339748 0.04364908
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tapply

tapply is used to apply a function over subsets of a vector. I don’t know why it’s

called tapply.

> str(tapply)

function (X, INDEX, FUN = NULL, ..., simplify = TRUE)

X is a vector

INDEX is a factor or a list of factors (or else they are coerced to factors)

FUN is a function to be applied

... contains other arguments to be passed FUN

simplify, should we simplify the result?
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tapply

Take group means.

> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> f <- gl(3, 10)

> f

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3

[24] 3 3 3 3 3 3 3

Levels: 1 2 3

> tapply(x, f, mean)

1 2 3

0.1144464 0.5163468 1.2463678
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tapply

Take group means without simplification.

> tapply(x, f, mean, simplify = FALSE)

$‘1‘

[1] 0.1144464

$‘2‘

[1] 0.5163468

$‘3‘

[1] 1.246368
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tapply

Find group ranges.

> tapply(x, f, range)

$‘1‘

[1] -1.097309 2.694970

$‘2‘

[1] 0.09479023 0.79107293

$‘3‘

[1] 0.4717443 2.5887025
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split

split takes a vector or other objects and splits it into groups determined by a factor

or list of factors.

> str(split)

function (x, f, drop = FALSE, ...)

x is a vector (or list) or data frame

f is a factor (or coerced to one) or a list of factors

drop indicates whether empty factors levels should be dropped
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split

> x <- c(rnorm(10), runif(10), rnorm(10, 1))

> f <- gl(3, 10)

> split(x, f)

$‘1‘

[1] -0.8493038 -0.5699717 -0.8385255 -0.8842019

[5] 0.2849881 0.9383361 -1.0973089 2.6949703

[9] 1.5976789 -0.1321970

$‘2‘

[1] 0.09479023 0.79107293 0.45857419 0.74849293

[5] 0.34936491 0.35842084 0.78541705 0.57732081

[9] 0.46817559 0.53183823

$‘3‘

[1] 0.6795651 0.9293171 1.0318103 0.4717443

[5] 2.5887025 1.5975774 1.3246333 1.4372701

[9] 1.3961579 1.0068999
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split

A common idiom is split followed by an lapply.

> lapply(split(x, f), mean)

$‘1‘

[1] 0.1144464

$‘2‘

[1] 0.5163468

$‘3‘

[1] 1.246368
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Splitting a Data Frame

> library(datasets)

> head(airquality)

Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6
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Splitting a Data Frame

> s <- split(airquality, airquality$Month)

> lapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")]))

$‘5‘

Ozone Solar.R Wind

NA NA 11.62258

$‘6‘

Ozone Solar.R Wind

NA 190.16667 10.26667

$‘7‘

Ozone Solar.R Wind

NA 216.483871 8.941935

$‘8‘

Ozone Solar.R Wind

NA NA 8.793548

$‘9‘

Ozone Solar.R Wind

NA 167.4333 10.1800
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Splitting a Data Frame

> sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")]))

5 6 7 8 9

Ozone NA NA NA NA NA

Solar.R NA 190.16667 216.483871 NA 167.4333

Wind 11.62258 10.26667 8.941935 8.793548 10.1800

> sapply(s, function(x) colMeans(x[, c("Ozone", "Solar.R", "Wind")],

na.rm = TRUE))

5 6 7 8 9

Ozone 23.61538 29.44444 59.115385 59.961538 31.44828

Solar.R 181.29630 190.16667 216.483871 171.857143 167.43333

Wind 11.62258 10.26667 8.941935 8.793548 10.18000
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Splitting on More than One Level

> x <- rnorm(10)

> f1 <- gl(2, 5)

> f2 <- gl(5, 2)

> f1

[1] 1 1 1 1 1 2 2 2 2 2

Levels: 1 2

> f2

[1] 1 1 2 2 3 3 4 4 5 5

Levels: 1 2 3 4 5

> interaction(f1, f2)

[1] 1.1 1.1 1.2 1.2 1.3 2.3 2.4 2.4 2.5 2.5

10 Levels: 1.1 2.1 1.2 2.2 1.3 2.3 1.4 ... 2.5
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Splitting on More than One Level

Interactions can create empty levels.

> str(split(x, list(f1, f2)))

List of 10

$ 1.1: num [1:2] -0.378 0.445

$ 2.1: num(0)

$ 1.2: num [1:2] 1.4066 0.0166

$ 2.2: num(0)

$ 1.3: num -0.355

$ 2.3: num 0.315

$ 1.4: num(0)

$ 2.4: num [1:2] -0.907 0.723

$ 1.5: num(0)

$ 2.5: num [1:2] 0.732 0.360
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split

Empty levels can be dropped.

> str(split(x, list(f1, f2), drop = TRUE))

List of 6

$ 1.1: num [1:2] -0.378 0.445

$ 1.2: num [1:2] 1.4066 0.0166

$ 1.3: num -0.355

$ 2.3: num 0.315

$ 2.4: num [1:2] -0.907 0.723

$ 2.5: num [1:2] 0.732 0.360
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mapply

mapply is a multivariate apply of sorts which applies a function in parallel over a set of

arguments.

> str(mapply)

function (FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,

USE.NAMES = TRUE)

FUN is a function to apply

... contains arguments to apply over

MoreArgs is a list of other arguments to FUN.

SIMPLIFY indicates whether the result should be simplified
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mapply

The following is tedious to type

list(rep(1, 4), rep(2, 3), rep(3, 2), rep(4, 1))

Instead we can do

> mapply(rep, 1:4, 4:1)

[[1]]

[1] 1 1 1 1

[[2]]

[1] 2 2 2

[[3]]

[1] 3 3

[[4]]

[1] 4
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Vectorizing a Function

> noise <- function(n, mean, sd) {

+ rnorm(n, mean, sd)

+ }

> noise(5, 1, 2)

[1] 2.4831198 2.4790100 0.4855190 -1.2117759

[5] -0.2743532

> noise(1:5, 1:5, 2)

[1] -4.2128648 -0.3989266 4.2507057 1.1572738

[5] 3.7413584
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Instant Vectorization

> mapply(noise, 1:5, 1:5, 2)

[[1]]

[1] 1.037658

[[2]]

[1] 0.7113482 2.7555797

[[3]]

[1] 2.769527 1.643568 4.597882

[[4]]

[1] 4.476741 5.658653 3.962813 1.204284

[[5]]

[1] 4.797123 6.314616 4.969892 6.530432 6.723254
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Instant Vectorization

Which is the same as

list(noise(1, 1, 2), noise(2, 2, 2),

noise(3, 3, 2), noise(4, 4, 2),

noise(5, 5, 2))

The R Language



Debugging

Computing for Data Analysis
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Something’s Wrong!

Indications that something’s not right

message: A generic notification/diagnostic message produced by the message
function; execution of the function continues

warning: An indication that something is wrong but not necessarily fatal;
execution of the function continues; generated by the warning function

error: An indication that a fatal problem has occurred; execution stops;
produced by the stop function

condition: A generic concept for indicating that something unexpected can
occur; programmers can create their own conditions
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Something’s Wrong!

Warning

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced
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Something’s Wrong

printmessage <- function(x) {

if(x > 0)

print("x is greater than zero")

else

print("x is less than or equal to zero")

invisible(x)

}
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Something’s Wrong

printmessage <- function(x) {

if(x > 0)

print("x is greater than zero")

else

print("x is less than or equal to zero")

invisible(x)

}

> printmessage(1)

[1] "x is greater than zero"

> printmessage(NA)

Error in if (x > 0) { : missing value where TRUE/FALSE needed
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Something’s Wrong!

printmessage2 <- function(x) {

if(is.na(x))

print("x is a missing value!")

else if(x > 0)

print("x is greater than zero")

else

print("x is less than or equal to zero")

invisible(x)

}
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Something’s Wrong!

printmessage2 <- function(x) {

if(is.na(x))

print("x is a missing value!")

else if(x > 0)

print("x is greater than zero")

else

print("x is less than or equal to zero")

invisible(x)

}

> x <- log(-1)

Warning message:

In log(-1) : NaNs produced

> printmessage2(x)

[1] "x is a missing value!"
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Something’s Wrong!

How do you know that something is wrong with your function?

What was your input? How did you call the function?

What were you expecting? Output, messages, other results?

What did you get?

How does what you get di↵er from what you were expecting?

Were your expectations correct in the first place?

Can you reproduce the problem (exactly)?
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Debugging Tools in R

The primary tools for debugging functions in R are

traceback: prints out the function call stack after an error occurs; does nothing
if there’s no error

debug: flags a function for “debug” mode which allows you to step through
execution of a function one line at a time

browser: suspends the execution of a function wherever it is called and puts the
function in debug mode

trace: allows you to insert debugging code into a function a specific places

recover: allows you to modify the error behavior so that you can browse the
function call stack

These are interactive tools specifically designed to allow you to pick through a
function. There’s also the more blunt technique of inserting print/cat statements in
the function.
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traceback

> mean(x)

Error in mean(x) : object ’x’ not found

> traceback()

1: mean(x)

>
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traceback

> lm(y ~ x)

Error in eval(expr, envir, enclos) : object ’y’ not found

> traceback()

7: eval(expr, envir, enclos)

6: eval(predvars, data, env)

5: model.frame.default(formula = y ~ x, drop.unused.levels = TRUE)

4: model.frame(formula = y ~ x, drop.unused.levels = TRUE)

3: eval(expr, envir, enclos)

2: eval(mf, parent.frame())

1: lm(y ~ x)
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debug

> debug(lm)

> lm(y ~ x)

debugging in: lm(y ~ x)

debug: {

ret.x <- x

ret.y <- y

cl <- match.call()

...

if (!qr)

z$qr <- NULL

z

}

Browse[2]>
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debug

Browse[2]> n

debug: ret.x <- x

Browse[2]> n

debug: ret.y <- y

Browse[2]> n

debug: cl <- match.call()

Browse[2]> n

debug: mf <- match.call(expand.dots = FALSE)

Browse[2]> n

debug: m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)
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recover

> options(error = recover)

> read.csv("nosuchfile")

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file ’nosuchfile’: No such file or directory

Enter a frame number, or 0 to exit

1: read.csv("nosuchfile")

2: read.table(file = file, header = header, sep = sep, quote = quote, dec = de

3: file(file, "rt")

Selection:
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Debugging

Summary

There are three main indications of a problem/condition: message, warning, error;
only an error is fatal

When analyzing a function with a problem, make sure you can reproduce the
problem, clearly state your expectations and how the output di↵ers from your
expectation

Interactive debugging tools traceback, debug, browser, trace, and recover

can be used to find problematic code in functions

Debugging tools are not a substitute for thinking!
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Generating Random Numbers

Functions for probability distributions in R

rnorm: generate random Normal variates with a given mean and standard
deviation

dnorm: evaluate the Normal probability density (with a given mean/SD) at a
point (or vector of points)

pnorm: evaluate the cumulative distribution function for a Normal distribution

rpois: generate random Poisson variates with a given rate

Simulation



Generating Random Numbers

Probability distribution functions usually have four functions associated with them.
The functions are prefixed with a

d for density

r for random number generation

p for cumulative distribution

q for quantile function
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Generating Random Numbers

Working with the Normal distributions requires using these four functions

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

If Φ is the cumulative distribution function for a standard Normal distribution, then
pnorm(q) = Φ(q) and qnorm(p) = Φ−1(p).
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Generating Random Numbers

Generating random Normal variates

> x <- rnorm(10)

> x

[1] 1.38380206 0.48772671 0.53403109 0.66721944

[5] 0.01585029 0.37945986 1.31096736 0.55330472

[9] 1.22090852 0.45236742

> x <- rnorm(10, 20, 2)

> x

[1] 23.38812 20.16846 21.87999 20.73813 19.59020

[6] 18.73439 18.31721 22.51748 20.36966 21.04371

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.32 19.73 20.55 20.67 21.67 23.39
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Generating Random Numbers

Setting the random number seed with set.seed ensures reproducibility

> set.seed(1)

> rnorm(5)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808

[5] 0.3295078

> rnorm(5)

[1] -0.8204684 0.4874291 0.7383247 0.5757814

[5] -0.3053884

> set.seed(1)

> rnorm(5)

[1] -0.6264538 0.1836433 -0.8356286 1.5952808

[5] 0.3295078

Always set the random number seed when conducting a simulation!
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Generating Random Numbers

Generating Poisson data

> rpois(10, 1)

[1] 3 1 0 1 0 0 1 0 1 1

> rpois(10, 2)

[1] 6 2 2 1 3 2 2 1 1 2

> rpois(10, 20)

[1] 20 11 21 20 20 21 17 15 24 20

> ppois(2, 2) ## Cumulative distribution

[1] 0.6766764 ## Pr(x <= 2)

> ppois(4, 2)

[1] 0.947347 ## Pr(x <= 4)

> ppois(6, 2)

[1] 0.9954662 ## Pr(x <= 6)

Simulation



Generating Random Numbers From a Linear Model

Suppose we want to simulate from the following linear model

y = β0 + β1x + ε

where ε ∼ N (0, 22). Assume x ∼ N (0, 12), β0 = 0.5 and β1 = 2.

> set.seed(20)

> x <- rnorm(100)

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-6.4080 -1.5400 0.6789 0.6893 2.9300 6.5050

> plot(x, y)
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Generating Random Numbers From a Linear Model
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Generating Random Numbers From a Linear Model

What if x is binary?

> set.seed(10)

> x <- rbinom(100, 1, 0.5)

> e <- rnorm(100, 0, 2)

> y <- 0.5 + 2 * x + e

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.4940 -0.1409 1.5770 1.4320 2.8400 6.9410

> plot(x, y)
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Generating Random Numbers From a Linear Model
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Generating Random Numbers From a Generalized Linear Model

Suppose we want to simulate from a Poisson model where

Y ∼ Poisson(µ)

logµ = β0 + β1x

and β0 = 0.5 and β1 = 0.3. We need to use the rpois function for this

> set.seed(1)

> x <- rnorm(100)

> log.mu <- 0.5 + 0.3 * x

> y <- rpois(100, exp(log.mu))

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 1.00 1.00 1.55 2.00 6.00

> plot(x, y)
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Generating Random Numbers From a Generalized Linear Model
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Random Sampling

The sample function draws randomly from a specified set of (scalar) objects allowing
you to sample from arbitrary distributions.

> set.seed(1)

> sample(1:10, 4)

[1] 3 4 5 7

> sample(1:10, 4)

[1] 3 9 8 5

> sample(letters, 5)

[1] "q" "b" "e" "x" "p"

> sample(1:10) ## permutation

[1] 4 7 10 6 9 2 8 3 1 5

> sample(1:10)

[1] 2 3 4 1 9 5 10 8 6 7

> sample(1:10, replace = TRUE) ## Sample w/replacement

[1] 2 9 7 8 2 8 5 9 7 8
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Simulation

Summary

Drawing samples from specific probability distributions can be done with r*
functions

Standard distributions are built in: Normal, Poisson, Binomial, Exponential,
Gamma, etc.

The sample function can be used to draw random samples from arbitrary vectors

Setting the random number generator seed via set.seed is critical for
reproducibility
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Introduction to the R Language
Plotting
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Plotting

The plotting and graphics engine in R is encapsulated in a few base and recommend
packages:

graphics: contains plotting functions for the “base” graphing systems, including
plot, hist, boxplot and many others.

lattice: contains code for producing Trellis graphics, which are independent of the
“base” graphics system; includes functions like xyplot, bwplot, levelplot

grid: implements a di↵erent graphing system independent of the “base” system;
the lattice package builds on top of grid; we seldom call functions from the grid
package directly

grDevices: contains all the code implementing the various graphics devices,
including X11, PDF, PostScript, PNG, etc.
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The Process of Making a Plot

When making a plot one must first make a few choices (not necessarily in this order):

To what device will the plot be sent? The default in Unix is x11; on Windows it is
windows; on Mac OS X it is quartz

Is the plot for viewing temporarily on the screen, or will it eventually end up in a
paper? Are you using it in a presentation? Plots included in a paper/presentation
need to use a file device rather than a screen device.

Is there a large amount of data going into the plot? Or is it just a few points?

Do you need to be able to resize the graphic?

The R Language



The Process of Making a Plot

What graphics system will you use: base or grid/lattice? These generally cannot
be mixed.

Base graphics are usually constructed piecemeal, with each aspect of the plot
handled separately through a series of function calls; this is often conceptually
simpler and allows plotting to mirror the thought process

Lattice/grid graphics are usually created in a single function call, so all of the
graphics parameters have to specified at once; specifying everything at once
allows R to automatically calculate the necessary spacings and font sizes.

The R Language



Base Graphics

Base graphics are used most commonly and are a very powerful system for creating
2-D graphics.

Calling plot(x, y) or hist(x) will launch a graphics device (if one is not
already open) and draw the plot on the device

If the arguments to plot are not of some special class, then the default method

for plot is called; this function has many arguments, letting you set the title, x
axis lable, y axis label, etc.

The base graphics system has many parameters that can set and tweaked; these
parameters are documented in ?par; it wouldn’t hurt to memorize this help page!
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Some Important Base Graphics Parameters

The par function is used to specify global graphics parameters that a↵ect all plots in
an R session. These parameters can often be overridden as arguments to specific
plotting functions.

pch: the plotting symbol (default is open circle)

lty: the line type (default is solid line), can be dashed, dotted, etc.

lwd: the line width, specified as an integer multiple

col: the plotting color, specified as a number, string, or hex code; the colors
function gives you a vector of colors by name

las: the orientation of the axis labels on the plot
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Some Important Base Graphics Parameters

bg: the background color

mar: the margin size

oma: the outer margin size (default is 0 for all sides)

mfrow: number of plots per row, column (plots are filled row-wise)

mfcol: number of plots per row, column (plots are filled column-wise)
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Some Important Base Graphics Parameters

Some default values.

> par("lty")

[1] "solid"

> par("lwd")

[1] 1

> par("col")

[1] "black"

> par("pch")

[1] 1

The R Language



Some Important Base Graphics Parameters

Some default values.

> par("bg")

[1] "transparent"

> par("mar")

[1] 5.1 4.1 4.1 2.1

> par("oma")

[1] 0 0 0 0

> par("mfrow")

[1] 1 1

> par("mfcol")

[1] 1 1
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Some Important Base Plotting Functions

plot: make a scatterplot, or other type of plot depending on the class of the
object being plotted

lines: add lines to a plot, given a vector x values and a corresponding vector of y
values (or a 2-column matrix); this function just connects the dots

points: add points to a plot

text: add text labels to a plot using specified x, y coordinates

title: add annotations to x, y axis labels, title, subtitle, outer margin

mtext: add arbitrary text to the margins (inner or outer) of the plot

axis: adding axis ticks/labels
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Useful Graphics Devices

The list of devices is found in ?Devices; there are also devices created by users on
CRAN

pdf: useful for line-type graphics, vector format, resizes well, usually portable

postscript: older format, also vector format and resizes well, usually portable,
can be used to create encapsulated postscript files, Windows systems often don’t
have a postscript viewer

xfig: good of you use Unix and want to edit a plot by hand
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Useful Graphics Devices

png: bitmapped format, good for line drawings or images with solid colors, uses
lossless compression (like the old GIF format), most web browsers can read this
format natively, good for plotting many many many points, does not resize well

jpeg: good for photographs or natural scenes, uses lossy compression, good for
plotting many many many points, does not resize well, can be read by almost any
computer and any web browser, not great for line drawings

bitmap: needed to create bitmap files (png, jpeg) in certain situations (uses
Ghostscript), also can be used to create a variety of other bitmapped formats not
mentioned

bmp: a native Windows bitmapped format

The R Language



Copying Plots

There are two basic approaches to plotting.

1 Launch a graphics device

2 Make a plot; annotate if needed

3 Close graphics device

Or

1 Make a plot on a screen device (default); annotate if needed

2 Copy the plot to another device if necessary (not an exact process)
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Copying Plots

Copying a plot to another device can be useful because some plots require a lot of
code and it can be a pain to type all that in again for a di↵erent device.

dev.copy: copy a plot from one device to another

dev.copy2pdf: copy a plot to a Portable Document Format (PDF) file

dev.list: show the list of open graphics devices

dev.next: switch control to the next graphics device on the device list

dev.set: set control to a specific graphics device

dev.off: close the current graphics device

NOTE: Copying a plot is not an exact operation!
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Lattice Functions

xyplot: this is the main function for creating scatterplots

bwplot: box-and-whiskers plots (“boxplots”)

histogram: histograms

stripplot: like a boxplot but with actual points

dotplot: plot dots on “violin strings”

splom: scatterplot matrix; like pairs in base graphics system

levelplot, contourplot: for plotting “image” data
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Lattice Functions

Lattice functions generally take a formula for their first argument, usually of the form

y ~ x | f * g

On the left of the ~ is the y variable, on the right is the x variable

After the | are conditioning variables — they are optional; the * indicates an
interaction

The second argument is the data frame or list from which the variables in the
formula should be obtained.

If no data frame or list is passed, then the parent frame is used.

If no other arguments are passed, there are defaults that can be used.
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Lattice Behavior

Lattice functions behave di↵erently from base graphics functions in one critical way.

Base graphics functions plot data directly the graphics device

Lattice graphics functions return an object of class trellis.

The print methods for lattice functions actually do the work of plotting the data
on the graphics device.

Lattice functions return “plot objects” that can, in principle, be stored (but it’s
usually better to just save the code + data).

On the command line, trellis objects are auto-printed so that it appears the
function is plotting the data

The R Language



Lattice Panel Functions

Lattice functions have a panel function which controls what happens inside each
panel of the entire plot.

x <- rnorm(100)

y <- x + rnorm(100, sd = 0.5)

f <- gl(2, 50, labels = c("Group 1", "Group 2"))

xyplot(y ~ x | f)

plots y vs. x conditioned on f.
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Lattice Panel Functions

xyplot(y ~ x | f,

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.abline(h = median(y),

lty = 2)

})

plots y vs. x conditioned on f with horizontal (dashed) line drawn at the median of y
for each panel.
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Lattice Panel Functions

Adding a regression line

xyplot(y ~ x | f,

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.lmline(x, y, col = 2)

})

fits and plots a simple linear regression line to each panel of the plot.
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Mathematical Annotation

R can produce LATEX-like symbols on a plot for mathematical annotation. This is very
handy and is useful for making fun of people who use other statistical packages.

Math symbols are “expressions” in R and need to be wrapped in the expression
function

There is a set list of allowed symbols and this is documented in ?plotmath

Plotting functions that take arguments for text generally allow expressions for
math symbols
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Mathematical Annotation

Some examples.

plot(0, 0, main = expression(theta == 0),

ylab = expression(hat(gamma) == 0),

xlab = expression(sum(x[i] * y[i], i==1, n)))

Pasting strings together.

x <- rnorm(100)

hist(x,

xlab=expression("The mean (" * bar(x) * ") is " *

sum(x[i]/n,i==1,n)))
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Substituting

What if you want to use a computed value in the annotation?

x <- rnorm(100)

y <- x + rnorm(100, sd = 0.5)

plot(x, y,

xlab=substitute(bar(x) == k, list(k=mean(x))),

ylab=substitute(bar(y) == k, list(k=mean(y)))

)

Or in a loop of plots

par(mfrow = c(2, 2))

for(i in 1:4) {

x <- rnorm(100)

hist(x, main=substitute(theta==num,list(num=i)))

}
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Summary of Important Help Pages

?par

?plot

?xyplot

?plotmath

?axis
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Plo$ng	  and	  Color	  in	  R	  

Compu1ng	  for	  Data	  Analysis	  



Plo$ng	  and	  Color	  

•  The	  default	  color	  schemes	  for	  most	  plots	  in	  R	  
are	  horrendous	  
–  I	  don’t	  have	  good	  taste	  and	  even	  I	  know	  that	  

•  Recently	  there	  have	  been	  developments	  to	  
improve	  the	  handling/specifica1on	  of	  colors	  in	  
plots/graphs/etc.	  

•  There	  are	  func1ons	  in	  R	  and	  in	  external	  
packages	  that	  are	  very	  handy	  



Colors	  1,	  2,	  and	  3	  
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Default	  Image	  Plots	  in	  R	  
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Color	  U1li1es	  in	  R	  

•  The	  grDevices	  package	  has	  two	  func1ons	  
– colorRamp!
– colorRampPalette!

•  These	  func1ons	  take	  paleNes	  of	  colors	  and	  
help	  to	  interpolate	  between	  the	  colors	  

•  The	  func1on	  colors()	  lists	  the	  names	  of	  
colors	  you	  can	  use	  in	  any	  plo$ng	  func1on	  



Color	  PaleNe	  U1li1es	  in	  R	  

•  colorRamp:	  Take	  a	  paleNe	  of	  colors	  and	  
return	  a	  func1on	  that	  takes	  values	  between	  0	  
and	  1,	  indica1ng	  the	  extremes	  of	  the	  color	  
paleNe	  (e.g.	  see	  the	  ‘gray’	  func1on)	  

•  colorRampPalette:	  Take	  a	  paleNe	  of	  
colors	  and	  return	  a	  func1on	  that	  takes	  integer	  
arguments	  and	  returns	  a	  vector	  of	  colors	  
interpola1ng	  the	  paleNe	  (like	  heat.colors 
or	  topo.colors)	  



colorRamp	  
> pal <- colorRamp(c("red", "blue"))!
!
> pal(0)!
     [,1] [,2] [,3]!
[1,]  255    0    0!
!
> pal(1)!
     [,1] [,2] [,3]!
[1,]    0    0  255!
!
> pal(0.5)!
      [,1] [,2]  [,3]!
[1,] 127.5    0 127.5!

Red	  

Green	  

Blue	  



colorRamp	  
!
> pal(seq(0, 1, len = 10))!
           [,1] [,2]      [,3]!
 [1,] 255.00000    0   0.00000!
 [2,] 226.66667    0  28.33333!
 [3,] 198.33333    0  56.66667!
 [4,] 170.00000    0  85.00000!
 [5,] 141.66667    0 113.33333!
 [6,] 113.33333    0 141.66667!
 [7,]  85.00000    0 170.00000!
 [8,]  56.66667    0 198.33333!
 [9,]  28.33333    0 226.66667!
[10,]   0.00000    0 255.00000!
!



colorRampPaleNe	  

> pal <- colorRampPalette(c("red", "yellow"))!
!
> pal(2)!
[1] "#FF0000" "#FFFF00"!
!
> pal(10)!
 [1] "#FF0000" "#FF1C00" "#FF3800" "#FF5500" "#FF7100"!
 [6] "#FF8D00" "#FFAA00" "#FFC600" "#FFE200" "#FFFF00”!
!
!



RColorBrewer	  Package	  

•  One	  package	  on	  CRAN	  that	  contains	  
interes1ng/useful	  color	  paleNes	  

•  There	  are	  3	  types	  of	  paleNes	  
– Sequen1al	  
– Diverging	  
– Qualita1ve	  

•  PaleNe	  informa1on	  can	  be	  used	  in	  
conjunc1on	  with	  the	  colorRamp() and	  
colorRampPalette()!



BrBG
PiYG
PRGn
PuOr
RdBu
RdGy

RdYlBu
RdYlGn
Spectral

Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd



RColorBrewer	  and	  colorRampPaleNe	  

> library(RColorBrewer)!
!
> cols <- brewer.pal(3, "BuGn")!
!
> cols!
[1] "#E5F5F9" "#99D8C9" "#2CA25F"!
!
> pal <- colorRampPalette(cols)!
!
> image(volcano, col = pal(20))!
!



RColorBrewer	  and	  colorRampPaleNe	  
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The	  smoothScaNer	  func1on	  

x <- rnorm(10000)!
y <- rnorm(10000)!
smoothScatter(x, y)!
!
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Some	  Other	  Plo$ng	  Notes	  

•  The	  rgb func1on	  can	  be	  used	  to	  produce	  any	  
color	  via	  red,	  green,	  blue	  propor1ons	  

•  Color	  transparency	  can	  be	  added	  via	  the	  
alpha parameter	  to	  rgb!

•  The	  colorspace	  package	  can	  be	  used	  for	  a	  
different	  control	  over	  colors	  



ScaNerplot	  with	  no	  transparency	  
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ScaNerplot	  with	  transparency	  
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Summary	  
•  Careful	  use	  of	  colors	  in	  plots/maps/etc.	  can	  make	  
it	  easier	  for	  the	  reader	  to	  get	  what	  you’re	  trying	  
to	  say	  (why	  make	  it	  harder?)	  

•  The	  RColorBrewer	  package	  is	  an	  R	  package	  that	  
provides	  color	  paleNes	  for	  sequen1al,	  
categorical,	  and	  diverging	  data	  

•  The	  colorRamp	  and	  colorRampPalette	  
func1ons	  can	  be	  used	  in	  conjunc1on	  with	  color	  
paleNes	  to	  connect	  data	  to	  colors	  

•  Transparency	  can	  some1mes	  be	  used	  to	  clarify	  
plots	  with	  many	  points	  
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Regular expressions

Regular expressions can be thought of as a combination of literals and
metacharacters

To draw an analogy with natural language, think of literal text forming the words
of this language, and the metacharacters defining its grammar

Regular expressions have a rich set of metacharacters
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Literals

Simplest pattern consists only of literals. The literal “nuclear” would match to the
following lines:

Ooh. I just learned that to keep myself alive after a

nuclear blast! All I have to do is milk some rats

then drink the milk. Aweosme. :}

Laozi says nuclear weapons are mas macho

Chaos in a country that has nuclear weapons -- not good.

my nephew is trying to teach me nuclear physics, or

possibly just trying to show me how smart he is

so I’ll be proud of him [which I am].

lol if you ever say "nuclear" people immediately think

DEATH by radiation LOL
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Literals

The literal “Obama” would match to the following lines

Politics r dum. Not 2 long ago Clinton was sayin Obama

was crap n now she sez vote 4 him n unite? WTF?

Screw em both + Mcain. Go Ron Paul!

Clinton conceeds to Obama but will her followers listen??

Are we sure Chelsea didn’t vote for Obama?

thinking ... Michelle Obama is terrific!

jetlag..no sleep...early mornig to starbux..Ms. Obama

was moving
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Regular Expressions

Simplest pattern consists only of literals; a match occurs if the sequence of literals
occurs anywhere in the text being tested

What if we only want the word “Obama”? or sentences that end in the word
“Clinton”, or “clinton” or “clinto”?
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Regular Expressions

We need a way to express

whitespace word boundaries

sets of literals

the beginning and end of a line

alternatives (“war” or “peace”)

Metacharacters to the rescue!
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Metacharacters

Some metacharacters represent the start of a line

^i think

will match the lines

i think we all rule for participating

i think i have been outed

i think this will be quite fun actually

i think i need to go to work

i think i first saw zombo in 1999.

7 / 28



Metacharacters

$ represents the end of a line

morning$

will match the lines

well they had something this morning

then had to catch a tram home in the morning

dog obedience school in the morning

and yes happy birthday i forgot to say it earlier this morning

I walked in the rain this morning

good morning
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Character Classes with []

We can list a set of characters we will accept at a given point in the match

[Bb][Uu][Ss][Hh]

will match the lines

The democrats are playing, "Name the worst thing about Bush!"

I smelled the desert creosote bush, brownies, BBQ chicken

BBQ and bushwalking at Molonglo Gorge

Bush TOLD you that North Korea is part of the Axis of Evil

I’m listening to Bush - Hurricane (Album Version)
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Character Classes with []

^[Ii] am

will match

i am so angry at my boyfriend i can’t even bear to

look at him

i am boycotting the apple store

I am twittering from iPhone

I am a very vengeful person when you ruin my sweetheart.

I am so over this. I need food. Mmmm bacon...
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Character Classes with []

Similarly, you can specify a range of letters [a-z] or [a-zA-Z]; notice that the order
doesn’t matter

^[0-9][a-zA-Z]

will match the lines

7th inning stretch

2nd half soon to begin. OSU did just win something

3am - cant sleep - too hot still.. :(

5ft 7 sent from heaven

1st sign of starvagtion
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Character Classes with []

When used at the beginning of a character class, the “^” is also a metacharacter and
indicates matching characters NOT in the indicated class

[^?.]$

will match the lines

i like basketballs

6 and 9

dont worry... we all die anyway!

Not in Baghdad

helicopter under water? hmmm
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More Metacharacters

“.” is used to refer to any character. So

9.11

will match the lines

its stupid the post 9-11 rules

if any 1 of us did 9/11 we would have been caught in days.

NetBios: scanning ip 203.169.114.66

Front Door 9:11:46 AM

Sings: 0118999881999119725...3 !
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More Metacharacters: |

This does not mean “pipe” in the context of regular expressions; instead it translates
to “or”; we can use it to combine two expressions, the subexpressions being called
alternatives

flood|fire

will match the lines

is firewire like usb on none macs?

the global flood makes sense within the context of the bible

yeah ive had the fire on tonight

... and the floods, hurricanes, killer heatwaves, rednecks, gun nuts, etc.
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More Metacharacters: |

We can include any number of alternatives...

flood|earthquake|hurricane|coldfire

will match the lines

Not a whole lot of hurricanes in the Arctic.

We do have earthquakes nearly every day somewhere in our State

hurricanes swirl in the other direction

coldfire is STRAIGHT!

’cause we keep getting earthquakes
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More Metacharacters: |

The alternatives can be real expressions and not just literals

^[Gg]ood|[Bb]ad

will match the lines

good to hear some good knews from someone here

Good afternoon fellow american infidels!

good on you-what do you drive?

Katie... guess they had bad experiences...

my middle name is trouble, Miss Bad News
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More Metacharacters: ( and )

Subexpressions are often contained in parentheses to constrain the alternatives

^([Gg]ood|[Bb]ad)

will match the lines

bad habbit

bad coordination today

good, becuase there is nothing worse than a man in kinky underwear

Badcop, its because people want to use drugs

Good Monday Holiday

Good riddance to Limey
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More Metacharacters: ?

The question mark indicates that the indicated expression is optional

[Gg]eorge( [Ww]\.)? [Bb]ush

will match the lines

i bet i can spell better than you and george bush combined

BBC reported that President George W. Bush claimed God told him to invade Iraq

a bird in the hand is worth two george bushes
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One thing to note...

In the following

[Gg]eorge( [Ww]\.)? [Bb]ush

we wanted to match a “.” as a literal period; to do that, we had to “escape” the
metacharacter, preceding it with a backslash In general, we have to do this for any
metacharacter we want to include in our match
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More metacharacters: * and +

The * and + signs are metacharacters used to indicate repetition; * means “any
number, including none, of the item” and + means “at least one of the item”

(.*)

will match the lines

anyone wanna chat? (24, m, germany)

hello, 20.m here... ( east area + drives + webcam )

(he means older men)

()
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More metacharacters: * and +

The * and + signs are metacharacters used to indicate repetition; * means “any
number, including none, of the item” and + means “at least one of the item”

[0-9]+ (.*)[0-9]+

will match the lines

working as MP here 720 MP battallion, 42nd birgade

so say 2 or 3 years at colleage and 4 at uni makes us 23 when and if we finish

it went down on several occasions for like, 3 or 4 *days*

Mmmm its time 4 me 2 go 2 bed
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More metacharacters: { and }

{ and } are referred to as interval quantifiers; the let us specify the minimum and
maximum number of matches of an expression

[Bb]ush( +[^ ]+ +){1,5} debate

will match the lines

Bush has historically won all major debates he’s done.

in my view, Bush doesn’t need these debates..

bush doesn’t need the debates? maybe you are right

That’s what Bush supporters are doing about the debate.

Felix, I don’t disagree that Bush was poorly prepared for the debate.

indeed, but still, Bush should have taken the debate more seriously.

Keep repeating that Bush smirked and scowled during the debate
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More metacharacters: and

m,n means at least m but not more than n matches

m means exactly m matches

m, means at least m matches
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More metacharacters: ( and ) revisited

In most implementations of regular expressions, the parentheses not only limit the
scope of alternatives divided by a “|”, but also can be used to “remember” text
matched by the subexpression enclosed

We refer to the matched text with \1, \2, etc.
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More metacharacters: ( and ) revisited

So the expression

+([a-zA-Z]+) +\1 +

will match the lines

time for bed, night night twitter!

blah blah blah blah

my tattoo is so so itchy today

i was standing all all alone against the world outside...

hi anybody anybody at home

estudiando css css css css.... que desastritooooo
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More metacharacters: ( and ) revisited

The * is “greedy” so it always matches the longest possible string that satisfies the
regular expression. So

^s(.*)s

matches

sitting at starbucks

setting up mysql and rails

studying stuff for the exams

spaghetti with marshmallows

stop fighting with crackers

sore shoulders, stupid ergonomics
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More metacharacters: ( and ) revisited

The greediness of * can be turned off with the ?, as in

^s(.*?)s$
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Summary

Regular expressions are used in many different languages; not unique to R.

Regular expressions are composed of literals and metacharacters that represent
sets or classes of characters/words

Text processing via regular expressions is a very powerful way to extract data from
“unfriendly” sources (not all data comes as a CSV file)

(Thanks to Mark Hansen for some material in this lecture.)
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Regular Expression Functions

The primary R functions for dealing with regular expressions are

grep, grepl: Search for matches of a regular expression/pattern in a character
vector; either return the indices into the character vector that match, the strings
that happen to match, or a TRUE/FALSE vector indicating which elements match

regexpr, gregexpr: Search a character vector for regular expression matches
and return the indices of the string where the match begins and the length of the
match

sub, gsub: Search a character vector for regular expression matches and replace
that match with another string

regexec: Easier to explain through demonstration.
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grep

Here is an excerpt of the Baltimore City homicides dataset:

> homicides <- readLines("homicides.txt")

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ’p2’, ’<dl><dt>Leon

Nelson</dt><dd class=\"address\">3400 Clifton Ave.<br />Baltimore, MD

21216</dd><dd>black male, 17 years old</dd>

<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd></dl>’"

> homicides[1000]

[1] "39.33626300000, -76.55553990000, icon_homicide_shooting, ’p1200’,...

How can I find the records for all the victims of shootings (as opposed to other causes)?
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grep

> length(grep("iconHomicideShooting", homicides))

[1] 228

> length(grep("iconHomicideShooting|icon_homicide_shooting", homicides))

[1] 1003

> length(grep("Cause: shooting", homicides))

[1] 228

> length(grep("Cause: [Ss]hooting", homicides))

[1] 1003

> length(grep("[Ss]hooting", homicides))

[1] 1005

4 / 21



grep

> i <- grep("[cC]ause: [Ss]hooting", homicides)

> j <- grep("[Ss]hooting", homicides)

> str(i)

int [1:1003] 1 2 6 7 8 9 10 11 12 13 ...

> str(j)

int [1:1005] 1 2 6 7 8 9 10 11 12 13 ...

> setdiff(i, j)

integer(0)

> setdiff(j, i)

[1] 318 859
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grep

> homicides[859]

[1] "39.33743900000, -76.66316500000, icon_homicide_bluntforce,

’p914’, ’<dl><dt><a href=\"http://essentials.baltimoresun.com/

micro_sun/homicides/victim/914/steven-harris\">Steven Harris</a>

</dt><dd class=\"address\">4200 Pimlico Road<br />Baltimore, MD 21215

</dd><dd>Race: Black<br />Gender: male<br />Age: 38 years old</dd>

<dd>Found on July 29, 2010</dd><dd>Victim died at Scene</dd>

<dd>Cause: Blunt Force</dd><dd class=\"popup-note\"><p>Harris was

found dead July 22 and ruled a shooting victim; an autopsy

subsequently showed that he had not been shot,...</dd></dl>’"
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grep

By default, grep returns the indices into the character vector where the regex pattern
matches.

> grep("^New", state.name)

[1] 29 30 31 32

Setting value = TRUE returns the actual elements of the character vector that match.

> grep("^New", state.name, value = TRUE)

[1] "New Hampshire" "New Jersey" "New Mexico" "New York"

grepl returns a logical vector indicating which element matches.

> grepl("^New", state.name)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE
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regexpr

Some limitations of grep

The grep function tells you which strings in a character vector match a certain
pattern but it doesn’t tell you exactly where the match occurs or what the match
is (for a more complicated regex.

The regexpr function gives you the index into each string where the match
begins and the length of the match for that string.

regexpr only gives you the first match of the string (reading left to right).
gregexpr will give you all of the matches in a given string.
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regexpr

How can we find the date of the homicide?

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, ’p2’, ’<dl><dt>Leon

Nelson</dt><dd class=\"address\">3400 Clifton Ave.<br />Baltimore,

MD 21216</dd><dd>black male, 17 years old</dd>

<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd></dl>’"

Can we just ’grep’ on “Found”?
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regexpr

The word ’found’ may be found elsewhere in the entry.

> homicides[954]

[1] "39.30677400000, -76.59891100000, icon_homicide_shooting, ’p816’,

’<dl><dd class=\"address\">1400 N Caroline St<br />Baltimore, MD 21213</dd>

<dd>Race: Black<br />Gender: male<br />Age: 29 years old</dd>

<dd>Found on March 3, 2010</dd><dd>Victim died at Scene</dd>

<dd>Cause: Shooting</dd><dd class=\"popup-note\"><p>Wheeler\\’s body

was&nbsp;found on the grounds of Dr. Bernard Harris Sr.&nbsp;Elementary

School</p></dd></dl>’"
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regexpr

Let’s use the pattern

<dd>[F|f]ound(.*)</dd>

What does this look for?

> regexpr("<dd>[F|f]ound(.*)</dd>", homicides[1:10])

[1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

[1] 93 86 89 90 89 84 85 84 88 84

attr(,"useBytes")

[1] TRUE

> substr(homicides[1], 177, 177 + 93 - 1)

[1] "<dd>Found on January 1, 2007</dd><dd>Victim died at Shock

Trauma</dd><dd>Cause: shooting</dd>"
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regexpr

The previous pattern was too greedy and matched too much of the string. We need to
use the ? metacharacter to make the regex “lazy”.

> regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:10])

[1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

[1] 33 33 33 33 33 33 33 33 33 33

attr(,"useBytes")

[1] TRUE

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"
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regmatches

One handy function is regmatches which extracts the matches in the strings for you
without you having to use substr.

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> regmatches(homicides[1:5], r)

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

13 / 21



sub/gsub

Sometimes we need to clean things up or modify strings by matching a pattern and
replacing it with something else. For example, how can we extract the data from this
string?

> x <- substr(homicides[1], 177, 177 + 33 - 1)

> x

[1] "<dd>Found on January 1, 2007</dd>"

We want to strip out the stuff surrounding the “January 1, 2007” piece.

> sub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007</dd>"

> gsub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007"
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sub/gsub

sub/gsub can take vector arguments

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> m <- regmatches(homicides[1:5], r)

> m

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

> gsub("<dd>[F|f]ound on |</dd>", "", m)

[1] "January 1, 2007" "January 2, 2007" "January 2, 2007" "January 3, 2007"

[5] "January 5, 2007"

> as.Date(d, "%B %d, %Y")

[1] "2007-01-01" "2007-01-02" "2007-01-02" "2007-01-03" "2007-01-05"
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regexec

The regexec function works like regexpr except it gives you the indices for
parenthesized sub-expressions.

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

> regexec("<dd>[F|f]ound on .*?</dd>", homicides[1])

[[1]]

[1] 177

attr(,"match.length")

[1] 33
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regexec

Now we can extract the string in the parenthesized sub-expression.

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

> substr(homicides[1], 190, 190 + 15 - 1)

[1] "January 1, 2007"

17 / 21



regexec

Even easier with the regmatches function.

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1:2])

> regmatches(homicides[1:2], r)

[[1]]

[1] "<dd>Found on January 1, 2007</dd>" "January 1, 2007"

[[2]]

[1] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"
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regexec

Let’s make a plot of monthly homicide counts

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides)

> m <- regmatches(homicides, r)

> dates <- sapply(m, function(x) x[2])

> dates <- as.Date(dates, "%B %d, %Y")

> hist(dates, "month", freq = TRUE)
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regexec

Histogram of dates
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Summary

The primary R functions for dealing with regular expressions are

grep, grepl: Search for matches of a regular expression/pattern in a character
vector

regexpr, gregexpr: Search a character vector for regular expression matches and
return the indices where the match begins; useful in conjunction with regmatches

sub, gsub: Search a character vector for regular expression matches and replace
that match with another string

regexec: Gives you indices of parethensized sub-expressions.
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Classes and Methods

A system for doing object oriented programming

R was originally quite interesting because it is both interactive and has a system
for object orientation.

Other languages which support OOP (C++, Java, Lisp, Python, Perl) generally
speaking are not interactive languages

In R much of the code for supporting classes/methods is written by John
Chambers himself (the creator of the original S language) and documented in the
book Programming with Data: A Guide to the S Language

A natural extension of Chambers’ idea of allowing someone to cross the user −→
programmer spectrum

Object oriented programming is a bit different in R than it is in most languages —
even if you are familiar with the idea, you may want to pay attention to the details
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Two styles of classes and methods

S3 classes/methods

Included with version 3 of the S language.

Informal, a little kludgey

Sometimes called old-style classes/methods

S4 classes/methods

more formal and rigorous

Included with S-PLUS 6 and R 1.4.0 (December 2001)

Also called new-style classes/methods
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Two worlds living side by side

For now (and the forseeable future), S3 classes/methods and S4 classes/methods
are separate systems (but they can be mixed to some degree).

Each system can be used fairly independently of the other.

Developers of new projects (you!) are encouraged to use the S4 style
classes/methods.

Used extensively in the Bioconductor project

But many developers still use S3 classes/methods because they are “quick and
dirty” (and easier).

In this lecture we will focus primarily on S4 classes/methods

The code for implementing S4 classes/methods in R is in the methods package,
which is usually loaded by default (but you can load it with library(methods) if
for some reason it is not loaded)
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Object Oriented Programming in R

A class is a description of an thing. A class can be defined using setClass() in
the methods package.

An object is an instance of a class. Objects can be created using new().

A method is a function that only operates on a certain class of objects.

A generic function is an R function which dispatches methods. A generic function
typically encapsulates a “generic” concept (e.g. plot, mean, predict, ...)

The generic function does not actually do any computation.

A method is the implementation of a generic function for an object of a particular
class.
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Things to look up

The help files for the ‘methods’ package are extensive — do read them as they are
the primary documentation

You may want to start with ?Classes and ?Methods

Check out ?setClass, ?setMethod, and ?setGeneric

Some of it gets technical, but try your best for now—it will make sense in the
future as you keep using it.

Most of the documentation in the methods package is oriented towards
developers/programmers as these are the primary people using classes/methods
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Classes

All objects in R have a class which can be determined by the class function

> class(1)

[1] "numeric"

> class(TRUE)

[1] "logical"

> class(rnorm(100))

[1] "numeric"

> class(NA)

[1] "logical"

> class("foo")

[1] "character"
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Classes (cont’d)

Data classes go beyond the atomic classes

> x <- rnorm(100)

> y <- x + rnorm(100)

> fit <- lm(y ~ x) ## linear regression model

> class(fit)

[1] "lm"
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Generics/Methods in R

S4 and S3 style generic functions look different but conceptually, they are the
same (they play the same role).

When you program you can write new methods for an existing generic OR create
your own generics and associated methods.

Of course, if a data type does not exist in R that matches your needs, you can
always define a new class along with generics/methods that go with it
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An S3 generic function (in the ‘base’ package)

The mean function is generic

> mean

function (x, ...)

UseMethod("mean")

<bytecode: 0x7fc25c27afc0>

<environment: namespace:base>

So is the print function

> print

function (x, ...)

UseMethod("print")

<bytecode: 0x7fc25bd8ee00>

<environment: namespace:base>
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S3 methods

> methods("mean")

[1] mean.data.frame mean.Date

[3] mean.default mean.difftime

[5] mean.POSIXct mean.POSIXlt
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An S4 generic function (from the ‘methods’ package)

The S4 equivalent of print is show

> show

standardGeneric for "show" defined from package "methods"

function (object)

standardGeneric("show")

<bytecode: 0x7fc25b5ced08>

<environment: 0x7fc25c51aea0>

Methods may be defined for arguments: object

Use showMethods("show") for currently available ones.

(This generic function excludes non-simple inheritance; see ?setIs)

The show function is usually not called directly (much like print) because objects are
auto-printed
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S4 methods

There are many different methods for the show generic function

> showMethods("show")

Function: show (package methods)

object="ANY"

object="classGeneratorFunction"

object="classRepresentation"

object="envRefClass"

object="function"

(inherited from: object="ANY")

object="genericFunction"

object="genericFunctionWithTrace"

object="MethodDefinition"

object="MethodDefinitionWithTrace"

object="MethodSelectionReport"

object="MethodWithNext"

object="MethodWithNextWithTrace"

object="namedList"

object="ObjectsWithPackage"

object="oldClass"

object="refClassRepresentation"

object="refMethodDef"

object="refObjectGenerator"

object="signature"

object="sourceEnvironment"

object="standardGeneric"

(inherited from: object="genericFunction")

object="traceable"
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Generic/method mechanism

The first argument of a generic function is an object of a particular class (there may be
other arguments)

1 The generic function checks the class of the object.

2 A search is done to see if there is an appropriate method for that class.

3 If there exists a method for that class, then that method is called on the object
and we’re done.

4 If a method for that class does not exist, a search is done to see if there is a
default method for the generic. If a default exists, then the default method is
called.

5 If a default method doesn’t exist, then an error is thrown.
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Examining Code for Methods

Examining the code for an S3 or S4 method requires a call to a special function

You cannot just print the code for a method like other functions because the code
for the method is usually hidden.

If you want to see the code for an S3 method, you can use the function
getS3method.

The call is getS3method(<generic>, <class>)

For S4 methods you can use the function getMethod

The call is getMethod(<generic>, <signature>) (more details later)
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S3 Class/Method: Example 1

What’s happening here?

> set.seed(2)

> x <- rnorm(100)

> mean(x)

[1] -0.03069816

1 The class of x is “numeric”

2 But there is no mean method for “numeric” objects!

3 So we call the default function for mean.
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S3 Class/Method: Example 1

> head(getS3method("mean", "default"))

1 function (x, trim = 0, na.rm = FALSE, ...)

2 {

3 if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {

4 warning("argument is not numeric or logical: returning NA")

5 return(NA_real_)

6 }

> tail(getS3method("mean", "default"))

19 lo <- floor(n * trim) + 1

20 hi <- n + 1 - lo

21 x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]

22 }

23 .Internal(mean(x))

24 }
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S3 Class/Method: Example 2

What happens here?

> set.seed(3)

> df <- data.frame(x = rnorm(100), y = 1:100)

> sapply(df, mean)

x y

0.01103557 50.50000000

1 The class of df is “data.frame”; in a data frame each column can be an object of
a different class

2 We sapply over the columns and call the mean function

3 In each column, mean checks the class of the object and dispatches the
appropriate method.

4 Here we have a numeric column and an integer column; in both cases mean

calls the default method
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Calling Methods

NOTE: Some methods are visible to the user (i.e. mean.default), but you should
never call methods directly. Rather, use the generic function and let the method be
dispatched automatically.
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S3 Class/Method: Example 3

The plot function is generic and its behavior depends on the object being plotted.

> set.seed(10)

> x <- rnorm(100)

> plot(x)
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S3 Class/Method: Example 3

For time series objects, plot connects the dots

> set.seed(10)

> x <- rnorm(100)

> x <- as.ts(x) ## Convert to a time series object

> plot(x)
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Write your own methods!

If you write new methods for new classes, you’ll probably end up writing methods for
the following generics:

print/show

summary

plot

There are two ways that you can extend the R system via classes/methods

Write a method for a new class but for an existing generic function (i.e. like
print)

Write new generic functions and new methods for those generics
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S4 Classes

Why would you want to create a new class?

To represent new types of data (e.g. gene expression, space-time, hierarchical,
sparse matrices)

New concepts/ideas that haven’t been thought of yet (e.g. a fitted point process
model, mixed-effects model, a sparse matrix)

To abstract/hide implementation details from the user

I say things are “new” meaning that R does not know about them (not that they are
new to the statistical community).
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S4 Class/Method: Creating a New Class

A new class can be defined using the setClass function

At a minimum you need to specify the name of the class

You can also specify data elements that are called slots

You can then define methods for the class with the setMethod function

Information about a class definition can be obtained with the showClass function
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S4 Class/Method: Polygon Class

Creating new classes/methods is usually not something done at the console; you likely
want to save the code in a separate file

setClass("polygon",

representation(x = "numeric",

y = "numeric"))

The slots for this class are x and y. The slots for an S4 object can be accessed with
the @ operator.
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S4 Class/Method: Polygon Class

A plot method can be created with the setMethod function.

For setMethod you need to specify a generic function (plot), and a signature.

A signature is a character vector indicating the classes of objects that are
accepted by the method. In this case, the plot method will take one type of
object–a polygon object.

setMethod("plot", "polygon",

function(x, y, ...) {

plot(x@x, x@y, type = "n", ...)

xp <- c(x@x, x@x[1])

yp <- c(x@y, x@y[1])

lines(xp, yp)

})

Notice that the slots of the polygon (the x- and y-coordinates) are accessed with the @

operator.
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S4 Class/Method: Polygon Class

Create a new class

> setClass("polygon",

+ representation(x = "numeric",

+ y = "numeric"))

Create a plot method for this class

> setMethod("plot", "polygon",

+ function(x, y, ...) {

+ plot(x@x, x@y, type = "n", ...)

+ xp <- c(x@x, x@x[1])

+ yp <- c(x@y, x@y[1])

+ lines(xp, yp)

+ })

[1] "plot"

If things go well, you will not get any messages or errors and nothing useful will be
returned by either setClass or setMethod.
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S4 Class/Method: Polygon Class

After calling setMethod the new plot method will be added to the list of methods for
plot.

> showMethods("plot")

Function: plot (package graphics)

x="ANY"

x="polygon"

Notice that the signature for class polygon is listed. The method for ANY is the
default method and it is what is called when now other signature matches
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S4 Class/Method: Polygon class

> p <- new("polygon", x = c(1, 2, 3, 4), y = c(1, 2, 3, 1))

> plot(p)
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Where to Look, Places to Start

The best way to learn this stuff is to look at examples (and try the exercises for
the course)

There are now quite a few examples on CRAN which use S4 classes/methods.

Bioconductor (http://www.bioconductor.org) — a rich resource, even if you know
nothing about bioinformatics

Some packages on CRAN (as far as I know) — SparseM, gpclib, flexmix, its,
lme4, orientlib, pixmap

The stats4 package (comes with R) has a bunch of classes/methods for doing
maximum likelihood analysis.
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